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Abstract

Many countries base college admissions on a centrally-administered test. Students

invest a great deal of resources to improve their performance on the test, and there

is growing concern about the high costs associated with these activities. We consider

modifying the test by introducing performance-disclosure policies that pool intervals of

performance rankings. Pooling affects the equilibrium allocation of students to colleges,
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which hurts some students and benefits others, but also affects students’ effort. We

investigate how such policies can improve students’ welfare in a Pareto sense, study

the Pareto frontier of pooling policies, and identify improvements that are robust to

the distribution of college seats.

We illustrate the potential applicability of our results with an empirical estimation

that uses data on college admissions in Turkey. We find that a policy that pools a large

fraction of the lowest performing students leads to a Pareto improvement in a contest

based on the estimated parameters. A laboratory experiment based on the estimated

parameters generally supports our theoretical predictions.
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1 Introduction

College and university admissions are often determined by students’ performance on a cen-

trally administered test. This is commonly the case in Brazil, China, Russia, South Korea,

and Turkey. The students with the highest performance are admitted to the best colleges,

those ranked below them are admitted to the next best colleges, etc. Other countries consider

additional factors, but even then centralized tests typically play an important role.

Consequently, students invest a great deal of effort preparing for these tests. In China,

Japan, South Korea, and Taiwan, students attend specialized “cram schools,” which focus on

improving students’ performance on the tests. This consists of rote learning, solving many

practice problems, and practicing test-taking strategies tailored to the specific test. Students

also hire tutors, buy books, and take specialized courses to improve their test scores. But

these costly activities are far less likely to generate substantial gains in students’ productive

human capital.

Reducing such activities is more difficult than it might initially appear. Passing laws

to prohibit or limit them may be both difficult and ineffective.1 Changing the admissions

process may also be impractical. First, it is not clear what a better system would look like.

For example, accurate tests lead to better students being admitted to better colleges, and

other systems may lead to different outcomes, which may or may not be preferred. Second,

implementing a new system may be expensive and technically difficult. Third, a new system

that helped some students but hurt others would likely face significant resistance.

This paper investigates simple modifications to centralized tests that make all students

better off. We model college admissions as a contest with many players (students) and many

prizes (college seats). Students exert costly effort and are admitted to colleges based on

the rank order of their performance.2 We consider performance-disclosure policies, which

pool together intervals of performance and assign the same score to all performances in an

1In a 2014 New York Times article, (https://www.nytimes.com/2014/08/02/opinion/sunday/ south-
koreas-education-system-hurts-students.html), Se-Woong Koo reports that many South Korean presidents
tried to limit cram schools’ activities, including passing a 10 p.m. mandatory closure time. But even this
restriction was circumvented “by operating out of residential buildings or blacking out windows so that light
could not be seen from outside.”

2Our analysis may also be applied to other large contest settings such as large corporate promotion
contests (we thank a referee for suggesting this example) and large grant competitions.

1



interval. Students with the same score are randomly admitted to the corresponding fraction

of colleges.3 For example, a “bottom pooling” policy that pools some fraction of the lowest

performing students assigns these students randomly to the same fraction of the lowest-

ranked college seats. Performance-disclosure policies do not require changing the tests or

introducing new components to the admissions process. They also respect the property that

a higher score leads to a better expected college assignment than a lower score. This may

help make such policies appealing to policy makers.

We study Pareto improving performance-disclosure policies, which benefit all students.

Our notion of Pareto improvements is an interim one, once a student knows her score but

before she learns her college assignment. Pareto improving policies often exist, because test

preparation is costly. Relative to the baseline contest, introducing a performance-disclosure

policy leads to some students being admitted to higher-ranked colleges with positive proba-

bility; this makes them better off even if they incur higher costs, provided the cost increase

is not too large. Other students are admitted to lower-ranked colleges with positive proba-

bility; if they also incur lower costs they are made better off, provided the reduction in the

costs is large enough.

We first characterize the Pareto improving policies that pool a single interval of perfor-

mance. The characterization shows that such pooling is Pareto improving if and only if the

student with the highest performance in the interval benefits from the pooling. This in turn

happens if the population distribution of student ability conditional on the same interval

(in percentile terms) first-order stochastically dominates the uniform distribution. We then

generalize this condition to policies with multiple pooling intervals and characterize the dis-

tributions of players’ types and the distributions of college seats for which Pareto improving

policies exist. We also consider mean-preserving contractions (MPCs) of the distribution of

college seats, which corresponds to pooling groups of college seats.4 We characterize the dis-

tributions of players’ types and the distributions of college seats for which Pareto improving

MPCs exist and the Pareto frontier of such MPCs.

3This can be viewed as making performance on the test noisier. Morgan et. al. (2022) suggest that other
forms of noise can also be socially beneficial.

4We thank the referees for encouraging us to consider MPCs.
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We then consider robust Pareto improving performance-disclosure policies, which are

Pareto improving for any distribution of college seats. We characterize the robust Pareto

improving policies and show that the Pareto optimal policy among them is unique. The char-

acterization may be particularly useful for empirical work because it only requires obtaining

an estimate of the students’ ability distribution.

We illustrate the potential applicability of our results with an empirical estimation that

uses data on college admissions in Turkey. We use the framework of Krishna et al. (2018)

along with novel techniques to calibrate the model and estimate applicants’ ability distribu-

tion and the distribution of college seats. We then simulate a college admissions contest with

these distributions. Among the many performance-disclosure policies on the Pareto frontier

of Pareto improving policies, we focus on the one that maximizes the utility of the applicants

with the lowest ability. This is a bottom pooling policy, which pools approximately 63 per-

cent of the lowest test scores and increases applicants’ estimated utility by approximately 32

percent. It also maximizes applicants’ aggregate welfare among all bottom pooling policies.5

Finally, we conduct a laboratory experiment based on the calibrated distributions and

the Pareto improving bottom pooling policy. We evaluate subjects’ behavior in the baseline

contest and with bottom pooling, and find that the behavior is in broad agreement with

the theory. A small set of subjects, those with the lowest ability among the subjects who

should not be affected by the bottom pooling policy, behave in a way that slightly decreases

their monetary payoffs. We aregue that a possible explanation for this behavior may be a

preference for randomization, similarly to the findings of Dwenger, Kübler, and Weizsäcker

(2016) in the context of school applications. Taken together, our theory, empirical estimation,

and experiment suggest that the simple performance-disclosure policies we investigate have

the potential to improve the welfare of millions of college admissions applicants.

The rest of the paper is organized as follows. Section 1.1 reviews the related litera-

ture. Section 2 introduces the model, presents the equilibrium, and defines the notion of

Pareto improvements. Section 3 investigates policies with a single pooling interval. Section

4 investigates policies with multiple pooling intervals. Section 5 derives the conditions for

5We additionally show that the robust Pareto improving policy is also a bottom pooling policy, which
pools approximately 52 percent of the lowest test scores.
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robust Pareto improvements. Section 6 discusses some limitations and extensions of the

model. Section 7 describes the empirical exercise. Section 8 presents the experimental re-

sults. Section 9 concludes. The appendix contains proofs, considers the Pareto frontier of

Pareto-improving policies that pool on multiple intervals, and examines peer effects. The

online appendix contains additional details about the empirical exercise, estimation strat-

egy, and counterfactuals, and provides additional details, results, and screenshots from our

experiment.

1.1 Contribution to the literature

The work by Che et al. (2018) is the most closely related to the theoretical part of our

paper. They study auction formats for a single object that are immune to collusion by

bidders, and identify optimal cartels. Given a multi-bidder auction and an equilibrium of

the auction, they model a cartel as a mechanism to which the bidders report their types

and which bids on their behalf in the auction. The auction is immune to collusion if no

such mechanism exists whose outcome is weakly preferred by all types of every bidder to

the equilibrium of the auction, with a strict preference for some type of some bidder. Their

Theorem 1 provides necessary and sufficient conditions for an auction to be immune to

collusion. We study contests with many players and prizes. We use Olszewski and Siegel’s

(2016) large contest framework to show that any equilibrium is approximated by a single-

agent mechanism that implements the assortative allocation of the prizes to agent types.

Thus, the motivating questions are different, the settings are different (for example, they have

multiple bidders whereas we have a single limiting agent), and the set of manipulations are

different (all possible mechanisms in their setting versus pooling intervals of performance in

our setting). Nevertheless, our characterization of contests for which no Pareto improvement

exists (Theorem 1 and, for mean-preserving contractions of the prize distribution, Theorem

2) is similar to their Theorem 1, and relies on a condition very similar to their condition

(PS). The intuition on their pages 411-412 for why the condition is necessary is similar in

both results.6 Our Theorem 3 also characterize the Pareto frontier of Pareto-improving mean-

6But the analysis, especially the proof of sufficiency, is different because of the different sets of manip-
ulations. Perhaps most intuitive is the comparison between our setting and the “single-bidder version” of
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preserving contractions, and this result is similar to Theorem 2 of Che et al. (2018) although

its proof is different. However, the corresponding Pareto frontier of category rankings, which

are the main objects of our analysis, differs from the Pareto frontier of mean-preserving

contractions (see Example 2 in Appendix C), and our results on the Pareto frontier of

category rankings have no counterparts in Che et al. (2018).

Moldovanu et al. (2007) show that the designer of a contest for status may prefer to

pool contestants into status categories in order to increase the aggregate performance.7 In

a two-sided matching model with ex-ante symmetric agents and costly signals, Hoppe et

al. (2009) provide conditions under which random matching leads to ex-ante higher welfare

than assortative matching and show that random matching is Pareto improving for agents

on one side if the distribution of types of that side first-order stochastically dominates the

uniform distribution. Other papers that compare contests and lotteries from the perspective

of contestants’ welfare include Taylor et al. (2003), Koh et al. (2006), Hoppe et al. (2011),

and Chakravarty and Kaplan (2013). Condorelli (2012) characterizes the ex-ante efficient

allocations of heterogeneous objects to heterogeneous agents with private valuations.8 We

are interested in interim Pareto improvements, and the set of ex-ante efficient allocations

can be completely different from those that are interim Pareto improving. Olszewski and

Siegel (2016) introduced the equilibrium approximation approach to large contests, which

we use here.9 Bodoh-Creed and Hickman (2018) use a similar approach to study quotas and

affirmative action in college admissions. One of their findings is that a college assignment

lottery would generate higher total student welfare than a college admissions contest. We

show that a lottery may be improved upon for all students by partitioning the set of students

their setting in which the strategies of the other bidders are given. Then, if a subset of types in their setting
deviates to bidding as some other type, the deviators obtain the same allocation as the other type. In our
setting, because the set of prizes is fixed, the deviation allocation depends on the subset of deviating types,
and this allocation usually differs from that of the other type.

7This happens when the ability distribution is sufficiently concave, in which case our results show that
pooling is not Pareto improving. Dubey and Geanakoplos (2010) consider a game of status between students
and show that coarse grading policies maximize effort.

8His main insights apply when all players’ type distributions have monotone hazard rates. We do not
require such a condition.

9Olszewski and Siegel (2020) use this approach to study performance-maximizing contests. Fang, Noe,
and Strack (2020) study the effect of different prize structures on aggregate effort in symmetric all-pay
auctions with complete information.
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into several categories based on their performance and using a lottery in each category.10

Our empirical application is closely related to three strands of literature in empirical

industrial organization. First, as we recover the distribution of placement values in the

Turkish college admission system, we heavily rely on the method of estimating single-agent

dynamic problems introduced in Hotz and Miller (1993); Krishna et al. (2018) adapt this

method to the context of Turkey. Second, our estimates of the costs of effort are based on

Berry (1994), who shows that mean values of choices can be backed out from the observed

shares of agents making these choices. Finally, our approach to estimating the distribution

of student ability is novel and thus does not have direct antecedents in the literature. To

some degree, we draw our inspiration from Guerre et al. (2000), who infer the distribution

of bidder private values from the distribution of observed bids in first-price auctions, which

has parallels with the way we back out the distribution of ability from student test scores.

2 The baseline contest

A large number of players (students) compete for prizes (college seats) by taking a test. Each

prize is characterized by its known value y in [0, 1], and all the players agree that a prize

with a higher value is better. Each player is characterized by her ability (type) x in [0, 1],

which affects her cost of performance on the test and/or her prize valuation. After privately

observing her type, each player exerts costly effort to achieve her desired performance t ≥ 0

on the test. The player with the highest performance obtains the highest prize, the player

with the second-highest performance obtains the second-highest prize, and so on. Some

prizes may be identical, which allows for multiple seats in a given college (or tier of colleges).

Thus, each player is admitted to the best college among those with available seats after

all the players with a higher performance have been admitted. Ties are resolved by a fair

10The optimality of coarse partitions with random lotteries within elements of the partitions has been
studied in less closely related papers, including Chao and Wilson (1987), Wilson (1989), and McAfee (2002)
in the context of priority classes and Damiano and Li (2007) and Rayo (2013) in monopolistic settings. The
effects of different grading policies has been studied by Ostrovsky and Schwarz (2010), Gottlieb and Smetters
(2014), Boleslavsky and Cotton (2015), and Harbaugh and Rasmusen (2018). Frankel and Kartik (2019)
show that test preparation not available to all students can diminish the signals contained in standardized
tests.
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lottery. The utility of a type x player who chooses performance t and obtains prize y is

g1 (x) y − c(t)

g2 (x)
, (1)

where c is strictly increasing and twice continuously differentiable and limt→∞ c(t) = ∞.11

Function c captures the cost of performance, function g1 ≥ 0 captures the effect of the

player’s type on her prize valuation, and function g2 ≥ 0 captures the effect of the player’s

type on her cost of performance. We let g1 (x) g2 (x) = x. Two special cases (which are

assumed in most of the contest literature) are

xy − c(t), (2)

in which the player’s type only affects her prize valuation, and

y − c(t)

x
, (3)

in which the player’s type only affects her performance cost. Utilities (1) for different func-

tions g1 and g2 are strategically equivalent because for each type x multiplying (1) by g2 (x)

gives (2).12 For convenience, throughout our theoretical analysis we will use utility (2), and

in the empirical analysis of Section 7 we will use utility (3). All of our theoretical results

hold without change for any utility (1). Section 6 discusses limitations of the model.

To solve for players’ equilibrium behavior, we assume that players’ types are drawn

independently (but not necessarily identically) across players, and we apply the large contests

results of Olszewski and Siegel (2016). These results show that players’ equilibrium behavior

is approximated by a particular single-agent mechanism, which assortatively allocates prizes

to agent types and gives the lowest type a utility of 0. To describe this mechanism, we

11The linearity of y is a normalization; we can replace y in players’ utility with h (y), where h is strictly
increasing and twice continuously differentiable and h (y) = 0, without affecting any of the results. We
can also replace the assumption that limt→∞ c(t) = ∞ with the assumption that limt→t c(t) = ∞ for some
positive t that represents a cap on students’ maximal effort.

12Different functions g1 have different implications for aggregate welfare, but this makes no difference for
our theoretical analysis because we focus on policies that make all students better off (we provide a precise
definition in Section 2.1).
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denote by F the CDF of the average of players’ type distributions and assume that F has

a continuous, strictly positive density f . We denote by G the CDF that represents the

empirical distribution of prizes, so the size of each atom of G corresponds to the number

of seats in a particular college (or tier of colleges), with G (0) representing the fraction of

students in excess of the total number of college seats.13 The assortative allocation assigns

to each type x prize

yA (x) = G−1 (F (x)) ,

where

G−1(z) = inf{y : G (y) ≥ z} for 0 ≤ z ≤ 1.

That is, the quantile in the prize distribution of the prize assigned to type x is the same as

the quantile of type x in the (average) type distribution. The unique incentive-compatible

mechanism that implements the assortative allocation and gives type x = 0 utility 0 specifies

for every type x performance

tA (x) = c−1
(
xyA (x)−

∫ x

0

yA (x̃) dx̃

)
. (4)

This implies that type x obtains utility

U(x) = xyA (x)− c(tA (x)) =

∫ x

0

yA (x̃) dx̃. (5)

Olszewski and Siegel (2016) show that in any equilibrium of a contest with many players and

prizes, for every player (except a small fraction of the players) the event that the player’s

type is some x, she chooses a performance close to tA (x), and obtains a prize close to yA (x),

which gives her a utility close to U (x), has probability close to 1.

The rest of the paper uses the approximating single-agent mechanism to investigate how

different performance-disclosure policies affect students’ welfare in a Pareto sense, which we

define in the next subsection.

13If there are n players and k prizes have value y or lower (including “null prizes” with value 0), then
G (y) = k/n.
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2.1 The notion of Pareto improvements

We use the term “Pareto-improving” in reference to types’ expected utility in an approximat-

ing mechanism. This utility corresponds to players’ interim utility - after players’ scores are

realized but before they learn to which college they are admitted. A performance-disclosure

policy is Pareto improving if in the corresonding approximating mechanism all types are bet-

ter off, and a positive measure of types is strictly better off. Such an improvement implies

that in a sufficiently large contest some players are strictly better of (in an interim sense)

and no player is worse off by more than an arbitrarily small amount; moreover, the sum of

these small amounts is arbitrarily small compared to the gains of the players who are strictly

better off. We underscore that because pooling in our performance-disclosure policies leads

to lotteries over prizes, by “gains” for a player we mean that the player prefers the lottery to

the original disclosure policy, but she may or may not prefer the outcome once the lottery

is realized.

3 Pooling on a single interval

We begin by considering pooling a single interval of performance. We denote the interval

by (q∗, q∗∗], where q∗ and q∗∗ are quantiles in the ranking of students’ realized performance,

with 0 ≤ q∗ < q∗∗ ≤ 1.14 Students whose performance ranking quantile lies in the interval

are treated identically. As a group, these students still obtain the prizes they would in the

baseline contest, that is, the prizes whose quantile ranking lies in the quantile interval (q∗, q∗∗]

of the prize distribution. But with pooling, these prizes are allocated uniformly at random

to the students in the group. The resulting game is therefore different from the baseline

contest. Nevertheless, we can describe the contest with pooling in an alternative, equivalent

way that allows us to use the same contest framework to study the effect of pooling. We do

this by considering an equivalent contest with no performance pooling in which the prizes

that correspond to the pooled interval are replaced with the same mass q∗∗ − q∗ of identical

14We use left-open intervals because the assortative allocation yA = G−1 ◦ F is left continuous due to the
type distribution F being continuous (by assumption) and the prize distribution G being right continuous
(as a CDF). The same is true for other assignments of prizes to types.
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prizes whose value is equal to the average value of the original prizes in the pooled interval.

Formally, let types x∗ and x∗∗ be the types at quantiles q∗ and q∗∗ in the type distribution,

that is, q∗ = F (x∗) and q∗∗ = F (x∗∗). We consider the prize distribution that results from

replacing the prizes in quantile interval (q∗, q∗∗] of the original prize distribution G with a

mass q∗∗ − q∗ of prize

y(q∗, q∗∗) =

∫ q∗∗
q∗

G−1 (z) dz

q∗∗ − q∗
=

∫ x∗∗
x∗

yA(x)dF (x)

F (x∗∗)− F (x∗)
. (6)

The corresponding assortative allocation coincides with the original assortative allocation

yA for types lower than x∗ and higher than x∗∗, and assigns prize y(q∗, q∗∗) to every type in

(x∗, x∗∗].

3.1 Welfare comparisons

Pooling affects both the equilibrium prize allocation and players’ performance choices. To

understand the overall welfare effects, our first result compares each type’s utility in the

approximating mechanisms with and without pooling.

Proposition 1. Consider pooling on a quantile interval (q∗, q∗∗]. If all the prizes in the

interval are identical, then pooling has no effect. If not all prizes in the interval are identical,

then the following statements hold, where q∗ = F (x∗) and q∗∗ = F (x∗∗).

(a) Types lower than x∗ are not affected.

(b) Type x in (x∗, x∗∗] weakly benefits from pooling if and only if

∫ x∗∗
x∗

yA(x̃)dF (x̃)

F (x∗∗)− F (x∗)
≥
∫ x
x∗
yA (x̃) dx̃

x− x∗
, (7)

and strictly benefits if the inequality is strict.

(c) There is a type x̂ in (x∗, x∗∗] such that types in (x∗, x̂) benefit from pooling and types

in (x̂, x∗∗) do not benefit from pooling.
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(d) Pooling is Pareto improving if and only if it weakly benefits type x∗∗, that is,

∫ x∗∗
x∗

yA(x̃)dF (x̃)

F (x∗∗)− F (x∗)
≥
∫ x∗∗
x∗

yA (x̃) dx̃

x∗∗ − x∗
,

and this holds if and only if pooling weakly benefits the highest type x = 1.

To understand the idea underlying Proposition 1, whose proof is in Appendix A, notice

that players with types lower than x∗ are unaffected because their performance and the prize

they obtain do not change with pooling. Players with types in (x∗, x̂) benefit, but the reason

for this may vary across the players. Players with types higher than but close to x∗ obtain a

prize lottery that is better than the prize they obtain without pooling, which benefits them

even though they choose a higher performance than without pooling. Players with types

lower than but close to x∗∗ obtain a prize lottery that is worse than the prize they obtain

without pooling, so if pooling is Pareto improving, these players must choose a sufficiently

lower performance with pooling that offsets the loss from the prize lottery.15 To understand

(7), which is the key condition in Proposition 1, multiply each side of (7) by x − x∗. The

left-hand side of (7) is the prize lottery obtained by every type in [x∗, x∗∗] in the contest

with pooling, so the left-hand side of (7) multiplied by x− x∗ is the difference between the

utilities of type x > x∗ and type x∗ in the contest with pooling. The right-hand side of (7)

multiplied by x− x∗ is

∫ x

x∗
yA (x̃) dx̃ =

∫ x

0

yA (x̃) dx̃−
∫ x∗

0

yA (x̃) dx̃,

which is the difference between the utilities of type x > x∗ and type x∗ in the contest

without pooling.16 This difference in utilities is a linear function with pooling (since the

prize y(q∗, q∗∗) is constant), and a convex function without pooling (because yA (x̃) increases

in x̃), so type x∗∗ is the most demanding: if type x∗∗ benefits from pooling, all types in [x∗, x∗∗]

15If pooling is Pareto improving, then it reduces the aggregate cost of performance with utility (3) because
the set of prizes is unchanged and all players are made (at least weakly) better off.

16Intuitively, type x̃ + dx̃ can pretend to be type x̃, obtain prize yA (x̃), and enjoy a utility increase of
yA (x̃) dx̃ relative to type x̃.
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benefit. This is illustrated in Figure 1.17 The utility difference between types x > x∗∗ and

type x∗∗ is unaffected by pooling since their prize allocation does not change, which explains

part (d) in the proposition.

Figure 1: Pooling is Pareto improving (left) and pooling is not Pareto improving (right).

A particular class of pooling intervals are those with lower bound q∗ = 0. We refer to

such intervals as “bottom pooling” intervals, and identify each interval with its upper bound,

q∗∗.18 Such intervals will play an important role in the empirical and experimental parts of

the paper.

4 Pooling on multiple intervals

We now consider more general performance disclosure policies, which pool on each of several

intervals of performance ranking. We will use the term “category rankings” to describe

such policies. One example is pooling above and below the median performance. Another

example is pooling performances below the 10-th percentile, between the 10-th percentile

and the 20-th percentile, etc. A category ranking induces a partition of the set of prizes,

and the prizes within each element of the partition are randomly assigned to the players in

the corresponding element of the category ranking.

Formally, a category ranking is a monotone partition J of the set [0, 1] of quantiles into

singletons and K left-open intervals. The intervals are Jk = (q∗k, q
∗∗
k ] for 1 ≤ k ≤ K ≤ n,

17The same phenomenon is illustrated in Figure 4 of Che et al. (2018).

18Bottom pooling with q∗∗ = 1 is a lottery over the entire set of prizes. This lottery is also a special case
of “top pooling,” which is the class of pooling intervals with upper bound q∗∗ = 1.
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where 0 ≤ q∗1 < q∗∗1 ≤ · · · ≤ q∗K < q∗∗K ≤ 1. The interpretation is that the fraction q∗∗k − q∗k of

players whose performance quantile rankings lie in Jk are grouped together (any rule can be

used to break ties in the ranking of two or more players who choose the same performance).

Prizes are assigned in decreasing value to the partition elements and distributed according

to a fair lottery among the players in each partition element. Similarly to the case of a single

interval, this contest is equivalent to a contest with no performance pooling in which the

prizes that correspond to each pooled interval Jk are replaced with a mass q∗∗k − q∗k of prize

y(Jk) =

∫ q∗∗k
q∗k

G−1 (z) dz

q∗∗k − q∗k
=

∫ x∗∗k
x∗k

yA(x)dF (x)

F (x∗∗k )− F (x∗k)
, (8)

where q∗k = F (x∗k) and q∗∗k = F (x∗∗k ). Thus, the category ranking J induces a partition I

of the set of types X = [0, 1] into singletons and the K intervals Ik = (x∗k, x
∗∗
k ], such that

in the approximating mechanism of the category ranking all types in interval Ik choose the

same performance and obtain the same prize y(Jk), and singleton types obtain the prize

they did in the original approximating mechanism. In what follows, it will be convenient

to consider such partitions of the set of types into singletons and left-open intervals and

the corresponding approximating mechanisms. We will abuse terminology slightly by also

referring to such partitions I of the type interval [0, 1] as category rankings.

4.1 Welfare comparisons

For category rankings that include more than one interval, a generalization of the conditions

in Proposition 1 provides sufficient conditions for a category ranking to increase the utility

of a type and to be Pareto improving, but these conditions are no longer necessary. This is

because pooling on an interval, I1 say, may increase the utility of types in a higher interval,

I2 say, to such a degree that the net effect on all types is positive even if pooling on I2 in

isolation lowers the utility of some types in I2 relative to the baselines contest. Relatedly,

a category ranking that benefits the highest type x = 1 is no longer necessarily Pareto

improving.19

19Both of these phenomena arise because with more than one pooling interval the equivalent of part (a)
in Proposition 1 no longer holds: for an interval Ik that is not the lowest one in the category ranking (so
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To obtain the sufficient conditions, consider a category ranking I that consists of the

K ≥ 2 intervals I1, . . . , IK , where Ik = (x∗k, x
∗∗
k ] and x∗∗k ≤ x∗k+1 for k < K. The effect of the

category ranking can be described as follows. For each k < K let Gk be the distribution of

prizes when the prizes corresponding to intervals I1, . . . , Ik are replaced by their averages.

Then, the contest with the category ranking that pools only intervals I1, . . . , Ik+1 is the

same as the contest with the single-interval category ranking that pools only interval Ik+1

but starts with prize distribution Gk. Proposition 1 describes the effect of this single-interval

category ranking on a baseline contest with prize distribution Gk. By induction on k we

immediately obtain the following result as a corollary of Proposition 1.

Proposition 2. (a) Type x in Ik = (x∗k, x
∗∗
k ] weakly benefits from the category ranking

I = {I1, ..., IK} if

∫ x∗∗k
x∗k

yA(x̃)dF (x̃)

F (x∗∗k )− F (x∗k)
≥

∫ x
x∗k
yA (x̃) dx̃

x− x∗k
and

∫ x∗∗j
x∗j

yA(x̃)dF (x̃)

F (x∗∗j )− F (x∗j)
≥

∫ x∗∗j
x∗j

yA (x̃) dx̃

x∗∗j − x∗j
for all j < k,

and strictly benefits if any of the inequalities is strict.

(b) The category ranking is Pareto improving if

∫ x∗∗j
x∗j

yA(x̃)dF (x̃)

F (x∗∗j )− F (x∗j)
≥

∫ x∗∗j
x∗j

yA (x̃) dx̃

x∗∗j − x∗j
for all j ≤ K.

The next subsection characterizes when Pareto improving category rankings exist and

discusses the Pareto frontier of category rankings.

4.2 Existence of Pareto improving category rankings and their

Pareto frontier

We now provide a condition that characterizes contests for which Pareto improvements exist.

For the condition, denote by F̂ the concavification (concave closure) of F , that is, the lowest-

k > 1), the utility of types lower than x∗k may be lower or higher than in the baseline contest, depending on
the effect of pooling on lower intervals.
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valued concave function that is (pointwise) weakly higher than F .

Theorem 1. There does not exist a Pareto improving category ranking if and only if for

any interval of types on which F̂ is linear, in the assortative allocation all the types in the

interval obtain the same prize, that is, yA (·) is constant on the interval.

The proof of Theorem 1 is in Appendix A. For some intuition, recall that by part (d) of

Proposition 1, pooling on an interval is Pareto improving if and only if it benefits the highest

type in the interval. When not all the types in an interval obtain the same prize, without

pooling the highest (and best-performing) type obtains a prize that is (interim) better than

the prize lottery induced by pooling. But pooling also eliminates the competition between

the types in the interval, since they all obtain the same prize lottery. This competition is

more intense, leading to more costly performance, if there are relatively more high types in

the interval, since they are willing to pay relatively more for the higher prizes in the interval.

The relative frequency of the types in the interval, which determines this trade-off between a

worse (interim) prize and a less costly performance, is precisely captured by the comparison

between F and F̂ .

The condition in Theorem 1 is essentially condition (PS) of Che et al. (2018). The

statement of Theorem 1 is very similar to what would be a single-bidder version of their

Theorem 1.20 The proof of the necessity of the condition is similar in both results, and the

proof of the sufficiency of the condition in our result is much simpler because the settings

are completely different.

For the distribution F that we estimate in Section 7 there is a single (maximal) interval

of types on which the concavification F̂ is linear and not all the types in the interval obtain

the same prizes. The lower bound of this interval is 0, and we investigate Pareto improving

bottom pooling policies that include this interval. The distribution and its concavification

are illustrated in Figure 6.

Turning to the Pareto frontier of Pareto improving category rankings, in Appendix C

we provide a method for checking whether a Pareto-improving category ranking can be

20But their setting stipulates multiple bidders. In a setting like theirs with a single bidder, or with multiple
bidders when fixing the equilibrium strategies of all but one of the bidders, the remaining bidder has no
profitable manipulation (no “Pareto improvement”), regardless of his type distribution.
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further Pareto improved. Using this method, we provide the following sufficient condition

for a Pareto-improving category ranking to belong to the Pareto frontier. The proof is in

Appendix C.

Proposition 3. A Pareto-improving category ranking belongs to the Pareto frontier of

Pareto-improving category rankings if on any interval of types on which F̂ is linear, all

types in the interval obtain the same prize (or prize lottery) in the allocation induced by the

category ranking.

The condition in Proposition 3 is only sufficient. Example 2 in Appendix C shows that

the Pareto frontier may also contain category rankings that do not satisfy the condition. As

we discuss in the next subsection, however, the condition becomes sufficient and necessary

if one considers mean-preserving contractions of the prize distribution instead of category

rankings.

4.3 Mean-preserving contractions

Category rankings pool intervals of performance. We investigated the effect of these policies

by using the fact that they are equivalent to pooling intervals of prizes. We now consider

mean-preserving contractions of the prize distribution G, which generalize category rankings

when the latter are viewed as pooling intervals of prizes instead of intervals of performance.

Formally, distribution H is a mean-preserving contraction (henceforth: MPC) of G (defined

on the same domain as G) if H second-order stochastically dominates G. In particular,

category rankings can be viewed as MPCs of the original prize distribution. An MPC is

an inverse of a mean-preserving spread, the latter of which is obtained by adding to each

outcome of the original distribution a random variable with mean zero.21 Adding a random

variable can be interpreted as distributing the “mass” assigned to each outcome over possibly

other outcomes. Therefore, an MPC of the prize distribution can be interpreted as dividing

the prizes into into groups, and replacing the mass of each group with its expected value (or,

equivalently, with a lottery over the prizes in the group). Moreover, any grouping of this

kind results in an MPC of the original prizes. Thus, all MPCs of the the prize distribution,

21See Mas-Colell et al. (1995), Example 6.D.2 and Proposition 6.D.2.
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and not only category rankings, can be implemented with an appropriate grouping policy.

But implementing some MPCs involves policies that seem less realistic, or at least more

controversial, than category rankings. The following example demonstrates this.

Example 1. Suppose there are equal masses of colleges of quality 1, 3, 4, and 6. Consider an

MPC that groups colleges 1 and 4 together and colleges 3 and 6 together. The average college

quality is 2.5 in the first group and 4.5 in the second group. Applicants would be classified as

“high performance” or “low performance” depending on whether their performance exceeds

the median. Low performance applicants would be assigned to a college in the first group,

and high performance applicants would be assigned to a college in the second group. Thus,

some high performance applicants would be assigned to college 3 while some low performance

applicants would be assigned to college 4. This is likely to be controversial.

Even though some MPCs may be unrealistic, MPCs may be of theoretical interest. We

therefore provide two results, whose proof is in Appendix B. The first result characterizes

when Pareto-improving MPCs exist, generalizing Theorem 1.

Theorem 2. There does not exist a Pareto-improving MPC if and only if for every interval

of types on which F̂ is linear, in the assortative allocation all the types in the interval obtain

the same prize, that is, yA (·) is constant on the interval.

The second result characterizes the Pareto frontier of Pareto-improving MPCs.22

Theorem 3. An MPC belongs to the Pareto frontier of Pareto-improving MPCs if and only

if on any interval of types on which F̂ is linear, all types in the interval obtain the same

prize (or prize lottery) in the allocation induced by the MPC.

5 Robust Pareto improvements

The results in the previous sections involve both the type distribution F and the prize

distribution G (via the assortative allocation yA = G−1 ◦ F ). We now present more robust

22Recall that Proposition 3 only provided a sufficient condition for a Pareto-improving category ranking
to belong to the Pareto frontier.
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results that involve only the type distribution F . These results may be useful for empirical

work because their lack of reliance on G frees the analyst from making assumptions about

how various college attributes that students may value are aggregated into a unidimensional

prize value.23 We point out, however, that the results still assume that students agree on

the ranking of colleges. We will use the term “robust Pareto improvement” as shorthand

for “weakly better for every type for any functions c and G, and a Pareto improvement for

some functions c and G.”24 Our main robustness results characterize robust Pareto improving

single-interval policies and category rankings, as well as their corresponding Pareto frontiers.

We begin with a characterization of robust Pareto improving single-interval policies.

Proposition 4. Pooling on a quantile interval (q∗, q∗∗] is robust Pareto improving if and

only if
F (x)− F (x∗)

F (x∗∗)− F (x∗)
≤ x− x∗

x∗∗ − x∗
(9)

for every x in (x∗, x∗∗], where q∗ = F (x∗) and q∗∗ = F (x∗∗).

Proposition 4 follows from part (d) of Proposition 1 because yA(x̃) = G−1 (F (x)) can be

an arbitrary increasing function with values in [0, 1] for an appropriate G, and (9) states that

distribution F restricted to the interval [x∗, x∗∗] first-order stochastically dominates (FOSD)

the uniform distribution on [x∗, x∗∗].

The following result characterizes robust Pareto improving category rankings.

Proposition 5. Category ranking I = {I1, ..., IK} is robust Pareto improving if and only if

for every interval Ik = (x∗k, x
∗∗
k ] in I we have that

F (x)− F (x∗k)

F (x∗∗k )− F (x∗k)
≤ x− x∗k
x∗∗k − x∗k

(10)

for every x in (x∗k, x
∗∗
k ].

Sufficiency of the condition in Proposition 5 follows from part (b) of Proposition 2 because

(10) states that distribution F restricted to each interval [x∗k, x
∗∗
k ] first-order stochastically

23We are grateful to a referee for suggesting this comment.

24This is different from robustness to the underlying information structure studied in the mechanism design
literature.
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dominates the uniform distribution on [x∗k, x
∗∗
k ]. Necessity follows from Proposition 4 by

observing that for every interval Ik = (x∗k, x
∗∗
k ] there are prize distributions G such that

yA(x̃) = G−1 (F (x)) is an arbitrary increasing function on (x∗k, x
∗∗
k ] with values in [0, 1] and

is constant below x∗k and above x∗∗k .

Proposition 4, Proposition 5, and Theorem 1 imply the following characterizations of

the Pareto frontiers of robust Pareto improving single-interval pooling policies and category

rankings. The proofs are in Appendix A.

Theorem 4. A single-interval pooling policy is on the Pareto frontier of robust Pareto im-

proving single-interval pooling policies if and only if the interval is a maximal interval on

which F̂ is linear.

Theorem 4 shows that to obtain an unimprovable Pareto improving single-interval pooling

policy that is robust to the prize distribution, one should pool on a maximal interval on

which F̂ is linear. If, however, one is able to estimate the prize distribution, then other

single-interval pooling policies may be on the Pareto frontier. Section 7 shows this in our

empirical exercise.

Theorem 5. If the number of maximal intervals on which F̂ is linear is finite, then the

Pareto frontier of robust Pareto improving category rankings consists of the single category

ranking that pools on every maximal interval on which F̂ is linear. Otherwise, the Pareto

frontier is empty.

The distinction in Theorem 5 between a finite and infinite number of maximal intervals

on which F̂ is linear arises because, by definition, a category ranking consists of a finite

number of pooling intervals.25

25This definition suffices for empirical applications and leads to technically simple proofs. Modifying the
definition to allow for a countably infinite number of intervals would lead to the Pareto frontier consisting of
the single category ranking that pools on every maximal interval on which F̂ is linear even when the number
of such intervals is infinite.
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6 Discussion: limitations and extensions

Our analysis relies on several assumptions. First, we stipulate a common ordinal ranking

of college quality across students.26 In reality, students often vary in how they rank col-

leges. Second, we assume that students can choose their performance precisely, without any

“noise.” This is obviously not the case in practice. In reality, students’ test performance is

often noisy, and the noisier the relationship between students’ preparation efforts and their

performance on the test, the less applicable our analysis of Pareto improvements. We make

these restrictive assumptions because they are required for our use of Olszewski and Siegel’s

(2016) large contest framework.27 Third, we assume that test preparation is costly, as in

Spence (1973). This should be interpreted as net of any direct benefit from the preparation

activities. This is most appropriate for activities geared specifically toward improving stu-

dents’ performance on the test, as discussed in the introduction. The model is less suitable

for countries in which high-school performance or other activities that have significant direct

benefits at moderate levels of investment play an important role in college admissions.28

In our model, a student’s valuation for being admitted to a college does not depend on

which other students are admitted to the same college. In Appendix D we consider a setting

in which each type x exerts a peer effect p (x), and each student in a college experiences the

average effects of the other students in the college. In a large contest, each student is fairly

certain about the equilibrium distribution of student types admitted to the various colleges.

We can therefore replace the value y of being admitted to a specific college with another

value that includes the peer effects generated by the set of students admitted to that college.

This generates a new prize distribution, and the rest of the analysis is unchanged.

Our focus on pooling intervals of performance on the test has some practical advantages.

26Homogeneous ordinal preferences are also assumed in some matching papers on school choice (for example
Lien, Zheng, and Zhong (2017)).

27With heterogeneous ordinal rankings, a higher type would not necessarily choose a higher performance.
With noisy performance, every effort choice would map to an endogenous distribution over prizes. In both
cases, the limiting allocation of prizes to types would no longer be assortative, which is required for our
techniques.

28But even there the costs may exceed the benefits past a certain point, as Bodoh-Creed and Hickman
(2024) demonstrate in the context of college admissions in the United States. They study a rich data set
and a contest model in which effort can be productive, but show that for most students most of the effort is
in fact wasteful.
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First, pooling intervals of performance does not require changing any of the prizes (col-

lege seats); it only requires that the prizes corresponding to a set of students with pooled

performances be allocated uniformly at random to these students. This makes such a pol-

icy potentially easy to implement. Second, pooling intervals of performance maintains the

property that a higher performance is better: a higher performance leads to a lottery over

prizes that are all better than the prizes in any different lottery associated with a lower

performance. As we discuss in Section 4.3, MPCs of the prize distribution, which generalize

pooling intervals of prizes, may violate this property.

7 Empirical illustration with Turkish data

We provide an empirical “proof of concept” by applying our theory to obtain Pareto im-

provements in a college admissions setting. We first estimate the primitives of our theory: a

type distribution F , a prize distribution G, and a cost function c. Our estimation uses data

on college applications of Turkish high school students.29 These students invest in tutoring

and obtaining admission to selective schools, and take the college entrance exam at the end

of high school. They can retake the exam every year, and only the last attempt is considered.

We extend the structural model of Krishna et al. (2018) to leverage the richness of the data,

including students’ choice to retake the exam, and estimate the primitives of the theoretical

model.30 We then use the estimated primitives to simulate a contest based on our theoretical

model and derive Pareto improvements for this contest. We first apply our results on robust

Pareto improvements and show that the Pareto optimal robust Pareto improving category

ranking is a bottom pooling policy. We then consider the Pareto frontier of (non-robust)

Pareto improving category rankings and show that the category ranking on the frontier that

maximizes the utility of the students with the lowest ability is also a bottom pooling policy,

which pools an even larger fraction of the students.

In the structural model, students participate in a large contest in a stationary overlapping

29Details regarding the data and the university entrance exam system in Turkey can be found in Krishna
et al. (2018).

30We distinguish between the theoretical model, laid out in Section 2, and the structural model, which we
estimate below.
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generations environment. Students are heterogeneous in ability, and each student solves a

single-agent infinite-horizon dynamic problem. In each period, the student faces uncertainty

over future exam scores. The student makes an initial effort choice, which corresponds to

schooling and tuition and determines her expected competitive standing when she takes the

college entrance exam for the first time. Then the student learns her score, which is equal to

her expected score plus noise, and decides whether to accept the corresponding placement

or retake the exam. If the student retakes the exam, she incurs a retaking cost, which can

depend on the number of times she has retaken the exam but is otherwise homogeneous

across students. Students who retake the exam draw a new score without new effort choices,

and so on.31 In the steady state of this problem, the mass of students taking the exam at

any point in time (fresh high school graduates and retakers) is constant.

We use the structural model and students’ test retaking decisions to estimate, for every

realized score, the value of obtaining that score in a particular retaking attempt.32 This

value includes the value of placement at that realized score and the option value of retaking

the exam. From these estimates, we compute function W (t), which is the value of reaching

the expected score t in the first exam attempt. We also use the estimates to recover the prize

distribution G because these estimates contain information on the value of placement (the

prize). This part of the estimation process borrows from Krishna et al. (2018).

We then use the structural model to infer students’ mean cost of effort, C(t), at each score

t. This is distinct from the cost c(t) in the theoretical model, as we clarify below. To recover

C(t), we use students’ private tutoring and high school choices (before the exam).33 These

choices are costly, but generate benefits captured by W (t) (estimated above), which depend

only on the expected score in the first exam attempt. The costs are the unknown parameters

to be estimated. The investment choices are discrete, so we employ a discrete choice setting

(mixed logit). We estimate the logit model, and from the observed choice shares, we back

out the net values of investments, which are the values of placement minus the investment

costs. We remove these net values from the gross benefits of investments reflected in W (t)

31Students who retake also obtain a learning shock to their score that is estimated to have a positive mean
and decreases with the number of retaking attempts.

32This value may change across the first several attempts.

33There is no data on the cost of effort, so we have to estimate this cost indirectly from students’ behavior.
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and obtain the cost C(t) of score t by averaging them across all the students with score t.

After estimating functions W (t) and C(t), we use the theoretical model to obtain its

remaining primitives: the type distribution F (x) and cost function c(t). This part of the

estimation has no counterpart in Krishna et al. (2018) and is a contribution in itself. It can

be used independently of the procedure used to estimate W (t) and C(t) in the previous step.

To obtain the type distribution F (x) and cost function c(t), we suppose that the students

compete in a large contest that corresponds to the theoretical model with prizes given by

the estimated function W (t), and derive the type distribution F (x) such that when each

type chooses an optimal score, the score distribution matches the one in the data, and the

cost of each score t is given by the estimated cost C(t). The assumed optimality of students’

choices gives us the function x(t), which maps each score t to the type x(t) that chooses it.

This, together with C(t), allows us to back out the cost function c(t).

Having estimated prize function G(t), cost function c(t), and type distribution F (x), we

simulate a contest that corresponds to the theoretical model with these primitives and derive

the effort, prize allocation, and utility of each type. We then use our theoretical results to

investigate Pareto improvements for this contest. In what follows, we elaborate on these

steps, focusing on the intuition and leaving the details to Online Appendices 1 and 2.

7.1 Estimation

7.1.1 Estimating G and W using the structural model

Each prize y corresponds to the value of a seat in the college system.34 To back out the

distribution G of y and function W (t), which describes the value of obtaining an expected

score of t in the first exam attempt, we first estimate a value function that maps every realized

rank (realized score quantile) in the exam in a particular retaking attempt to a value that

includes the value of placing with this rank, the option value of retaking the exam, and the

cost of retaking following that attempt. Given a student’s realized score rank on the exam,

the student is more likely to retake the exam if the value function increases more sharply

34All values are in utility terms relative to the value of the best available seat, which is normalized to 1.
The value of the worst available seat is normalized to zero, and all the costs and value functions are measured
in these units.
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at this rank. The placement value of a student with a rank r is G−1(r). Once we know

the value function, we obtain G−1(r) and the retaking costs that rationalize this function by

using Bellman’s equation that describes the student’s decision whether to retake the exam.

Thus, the value function, retaking costs, and G(y) are pinned down by the observed exam

retaking rates. Since the cost of retaking is assumed homogeneous, it is pinned down by the

average retaking rates. The variation in retaking rates by student rank, in turn, pins down

the curvature of G(y).
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(b) Value function before the first exam attempt, W (t(r)).

Figure 2: The value of placement and the value of rank in the first attempt

Figure 2a depicts the estimate of G−1(r), the utility of placement, obtained after nor-

malizing the range of prizes to [0, 1] and approximating G−1(r) in a flexible non-parametric

way. This function increases sharply at the very top. Students with close-to-perfect scores

retake, which can only be rationalized by a sharply increasing utility of placement.

Taking an expectation of the value function over score rank realizations, we obtain the

value of a given expected rank in the first attempt, W (t(r)), where t(r) is the expected score

needed to obtain rank r (W (t(r)) is formally defined in equation (28) in Online Appendix

1). This value includes the utility of placement and the option value of retaking and its cost.

It is depicted in Figure 2b.35

35The rank in Figure 2a is restricted to the set of students who accept placement, while that in Figure 2b
includes all students taking the exam.
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7.1.2 Estimating C using the structural model

To back out the remaining two primitives of the theoretical model, the cost function and

the distribution of types, we rely on the observable data on pre-test effort. There are two

ways in which students can increase their test scores: by going to private or selective public

schools, and by taking extra preparatory courses after school. Both ways are costly: selective

schools require entrance exams of their own and involve much effort, and private schools and

preparatory courses charge tuition. We refer to selective public schools as ‘exam schools.’

There is a clear relationship between pre-test investment and test outcomes. Figure 3

plots the shares of students taking preparatory courses and/or being enrolled in selective

and private schools conditional on the exam score. Students at the bottom of the score

distribution are predominantly educated in public schools; only about a third of them take

preparatory courses before the exam. Students at the top of the score distribution are

predominantly educated in exam schools, and nearly all of them take extra preparatory

courses. Private schools are the middle ground between public schools and exam schools.
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Figure 3: Schooling investments before the first exam attempt

To determine the costs of the three types of pre-test investment, we use a mixed logit

discrete choice model with data on individual choices of students and the value of expected

rank derived from the utility of placement estimated above. Each middle-school student

chooses between public, private, and exam high schools, with or without extra preparatory

courses, which results in six effort options in total. Each effort option is associated with

an expected gain in score estimated from a regression with the score on the left-hand side,
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controlling for demographics, middle-school GPA, and other relevant observables. The utility

gain from effort is the increase in the value of the expected rank, which comes from Figure

2b. The student maximizes the net gain, which is the difference between the above utility

gain and the associated cost of investment.36

The net utilities in the logit model are directly related to the shares in the data of the

options chosen by the students, that is, the net utilities are obtained by inverting the shares.

Having net utilities and gross gains allows us to infer the costs incurred as their difference.

These inferred costs vary across students both because of variations in student background

and the random shocks to scores and costs of effort in the structural model. Having obtained

the cost of each of the six effort levels and the parameters of the cost shocks, we use these

parameters and the data on each student’s effort level and realized score to compute, for

each score, the average effort cost incurred by the students who obtained this score. These

inferred costs, C(t), are depicted in Figure 4.
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Figure 4: The estimated cost of effort, by score, in the first attempt

36Enrolling into an exam school may not be feasible for students who cannot pass the selection exams,
especially if they choose the type of high school shortly before these exams. However, since these choices
are often made well in advance, students can (and do) prepare for the selection exams. Thus, in principle,
exam schools are available to everyone given sufficient effort. The cost of effort and the returns can vary
across students, and our structural model allows for this. In particular, the mean cost of effort γgi0(hs, pt)
in our model depends on students’ middle-school GPA, gi0, which captures the fact that to pass the school
selection tests may be harder for students with lower levels of achievement.
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7.1.3 Estimating F and c using the theoretical model

We have estimated G(y), W (t), and C(t) using the structural model. To fully calibrate the

theoretical model, it remains to estimate F (x) and c(t). To do so, we now think of the

Turkish students as competing in a one-shot contest given by our theoretical model with

prizes given by W (t), which includes in reduced form the value of any future test retaking.37

We suppose that the data corresponds to an equilibrium of this model, so that, in particular,

c(t)/xA(t) = C(t).38 We use this equation to obtain F (x) and c(t) as explained below.

From equation (3) with W (t) instead of y, we obtain that the utility of type x is W (t)−

c(t)/x. Differentiating this with respect to t, we obtain the optimality condition for type

x = xA(t),
c′(t)

xA(t)
= W ′(t). (11)

Differentiating C(t) = c(t)/xA(t) and substituting for c′(t)
xA(t)

using (11) gives

C ′(t) =
c′(t)

xA(t)
− c(t)

xA(t)2
dxA(t)

dt
= W ′(t)− C(t)

xA(t)

dxA(t)

dt
.

After re-arranging terms, we obtain a differential equation with xA(t), the equilibrium map-

ping from score to ability, as the unknown function:

dxA(t)

dt
= xA(t)

W ′(t)− C ′(t)
C(t)

.

At this point, we know the ratio W ′(t)−C′(t)
C(t)

. We also know that the highest-ability student

chooses the highest score. This allows us to integrate the equation numerically to obtain

xA(t). Once we have xA(t), we invert this function to obtain the distribution of ability since

we have the distribution of scores in the data.39 We also obtain c(t) as c(t) = C(t)xA(t).

These remaining primitives of the model are presented in Figure 5. Panels 5a and 5b plot the

37In particular, we suppose that the students can choose a deterministic non-negative score instead of
choosing one of the six levels of effort that translate into a noisy score.

38Recall that the theoretical model predicts that students with higher ability choose higher scores; xA(t)
associates each score t with the type xA(t) that chooses it in equilibrium.

39The distribution of ability F can be expressed via the observed CDF of scores, H(t), and the inverse

function tA =
(
xA
)−1

: F (x) = Pr{X < x} = Pr{tA(X) < tA(x)} = Pr{t < tA(x)} = H(tA(x)).
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Figure 5: Estimated elements of the model

ability distribution F (x) and its density f(x). The estimate for c(t) is shown in Figure 5c.

7.2 Simulating Pareto improvements in the theoretical model

Having estimated F (x), G(y), and c(t), we simulate a contest based on our theoretical model

with these primitives and utility y − c(t)/x (that is, (3)).40 We then investigate Pareto

improvements for this contest.
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Figure 6: Concavification of the ability distribution

Our theoretical results on Pareto-improving pooling intervals and category rankings refer

to the concavification F̂ (x) of F (x). Figure 6a plots F (x) in blue and its concavification

40This contest has no exam retaking and uses prize distribution G(y), which does not include the value of
retaking, so that players face the rank-to-prize mapping in Figure 2a. One may consider using W (t) instead
of G(t) as the prize distribution, but although W (t) correctly reflects the value of placement and retaking
in the baseline contest equilibrium, it is not a primitive of the theoretical model. A counterfactual pooling
policy would affect retaking incentives, thereby altering the prize distribution relative to the baseline contest.
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F̂ (x) in red. The two functions look very similar on [0, 1], but the concavification is in fact

significantly above F approximately on the interval [0, 0.09].41 This interval, which pools

approximately 52 percent of the students, is highlighted in Figure 6b and its upper bound is

depicted by the dashed red line, which clearly shows that F̂ (x) is linear on this interval and

is not linear elsewhere. We refer to this interval as the minimal bottom pooling interval.
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Figure 7: Welfare gains under minimal and maximal bottom pooling

We begin with robust Pareto improvements, which depend only on the type distribution.

By Theorem 5, the Pareto frontier of robust Pareto improving category rankings (which may

involve pooling on multiple intervals), consists of the single policy that pools every interval

on which F̂ (x) is linear. Thus, because F̂ (x) is linear only the minimal bottom pooling

interval, the bottom pooling policy that pools on this interval is the unique Pareto optimal

robust Pareto improving policy.

We now turn to Pareto-improving policies that depend on the prize distribution and are

not necessarily robust. Because the assortative allocation for the estimated type and prize

distributions does not assign all types in the minimal bottom pooling interval the same prizes

(see Figure 2a), by Theorem 1 Pareto improving policies exist. Moreover, by Proposition 3,

the minimal bottom pooling policy (which is the Pareto optimal robust Pareto improving

policy) is on the Pareto frontier of (non-robust) Pareto-improving category rankings. This

41Everywhere else the distance between F (x) and its concavification, if it is positive, is more than a
hundred times smaller. Such regions arise mostly due to rounding and smoothing errors for extreme values
of x as the data get sparse in these regions.
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Pareto frontier also includes other policies, which benefit different types to different degrees.

Among them, we focus on the policy that benefits the lowest types the most.

To identify this policy, notice that the lowest types only benefit from policies that include

a bottom-pooling interval.42 Moreover, the longer the bottom-pooling interval, the greater

the benefit of the low types because any bottom pooling interval is associated with a score

of zero, and the higher the upper bound of the interval, the better the distribution of prizes

associated with the interval. Thus, to benefit the lowest types the most, we first identify

the largest Pareto-improving bottom-pooling interval. As we clarify below, this interval

strictly contains the minimal bottom pooling interval, and the utility of the type at the

top of the interval is the same as in the baseline contest (otherwise the interval can be

further increased), and therefore so are the utilities of all higher types. Since F̂ (x) is not

linear on any interval above the minimal bottom pooling one, Theorem 1 applied to the prize

distribution corresponding to the largest Pareto-improving bottom pooling policy shows that

no additional pooling interval can be added while remaining Pareto improving. That is, the

longest Pareto-improving bottom pooling interval is the category ranking on the Pareto

frontier of Pareto-improving category rankings that benefits the lowest types the most.

To identify the longest bottom pooling interval, we first pool on the minimal bottom

pooling interval.43 We simulate the baseline equilibrium payoffs, as well as those under

minimal bottom pooling. Figure 7a shows these payoffs as a function of student type. The

former and the latter payoffs are shown in solid blue and dashed red respectively. Figure 7b

highlights these differences by zooming in on lower abilities.

Note that minimal bottom pooling makes everyone better off. It creates slack for those not

pooled in terms of their utility relative to the baseline contest. This slack lets us increase the

upper bound of the pooled region while keeping the non-pooled above their baseline payoffs.

As raising the upper bound raises the expected prize for the pooled types, these types gain,

42Any category ranking without bottom pooling leaves unchanged the chosen score, prize allocation, and
utility of the types in [0, x] for some x > 0.

43Recall that there are other intervals on which F̂ (x) is slightly above F (x), which we ignore. To verify
that we do not lose anything by restricting ourselves to the lowest interval only, we compare the minimal
bottom pooling to the policy that, in addition, pools on all these additional intervals. The payoffs under
these two policies are depicted in Figure 3.1 in Online Appendix 3, which shows that they are essentially
identical.
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while the non-pooled ones lose. At some point, as we continue to raise the upper bound, the

slack is exhausted, so that the type at the top of the pooling interval has the same payoff

as in the status quo. At this point, we reach the maximal bottom pooling policy, under

which the lowest types obtain their maximal payoff across all Pareto-improving policies on

the Pareto frontier. The payoffs under this policy are depicted in Figure 7 in dashed black.

This policy pools together approximately 63 percent of the students.44
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Figure 8: All Pareto-improving bottom pooling policies

In addition to maximizing the utility of the lowest types among all the policies on the

Pareto frontier of Pareto-improving category rankings, in our setting the maximal bottom

pooling policy also maximizes the aggregate utility across all bottom pooling policies. In

Figure 8a, the pink area gives the payoffs obtained across all Pareto-improving bottom

pooling policies, while the dashed black line depicts payoffs under maximal bottom pooling

(as in Figure 7). Figure 8b depicts the aggregate utility for each upper bound of the Pareto-

improving bottom-pooling policies. The figure shows that the aggregate utility increases in

the upper bound, and is therefore maximized by maximal bottom-pooling.

To better understand the source of gains under maximal bottom pooling, consider Fig-

44As we mention in Section 6, our theoretical model does not allow for noise in scores or test retaking.
To check if our main results still hold in a more complex environment, we simulate the maximal bottom
pooling policy with the structural model from Section 7 instead of the theoretical model from Section 2 and
present the results in Online Appendix 3. The structural model explicitly allows for shocks to scores (noise),
multiple dimensions in student ability, and the option to retake the university entrance exam. We show that
bottom pooling still achieves a Pareto improvement: irrespective of student’s initial standing before high
school, maximal bottom pooling raises student utility.

31



ure 9. Figure 9a shows types’ utilities, y(x) − c(t(x))/x, under maximal bottom pooling

and in the baseline contest. Figure 9b shows the equilibrium scores under the two policies.

Figures 9c and 9d decompose the payoffs into what is explained by placement, y, and what

is explained by the cost of effort, c(t)/x.
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Figure 9: Equilibrium payoffs and effort in the baseline contest and under bottom pooling.

Bottom pooling strictly increases the payoff of the types in the pooled interval because

pooling induces these types to reduce their investment while still obtaining one of the pooled

college seats. Pooling the prizes at the bottom raises the placement payoff for the lower-end

types within the pooled interval and reduces the placement payoff for the higher-end types

(Figure 9c). However, since the costs of effort are zero for all the pooled types (Figure

9d), everyone in the pooled interval gains, with the lower-end types gaining more than the

higher-end types (as evident from Figure 9a). Higher types, those above the pooled interval,

are not affected because neither their placements nor their effort is affected by the change
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in policy from the baseline contest to the maximal bottom pooling one. Overall, the mean

utility increases by 32 percent, while the pooled types gain 83 percent on average compared

to the baseline contest.

8 Experimental exercise

We conducted a laboratory experiment based on a discretized version of the calibration

exercise and the maximal Pareto improving (non-robust) bottom pooling policy identified

in Section 7. While there are substantial differences in stakes between the experiment and

real-world decisions that influence college admissions, the experiment may help us identify

unanticipated behaviors policy-makers may observe when implementing a pooling policy,

and what the resulting welfare implications would be.

To conduct the experiment, we transformed the game into an individual decision-making

problem in a discretized setting without strategic uncertainly. The costs and benefits, ex-

ogenous from the subjects’ point of view, correspond to a situation in which the admission

criteria are known in advance. This is often the case in college admissions settings that

involve a large number of applicants and therefore entail little uncertainty.

In the experiment, each college, or tier of pooled colleges, had an admission threshold.

Subjects in the experiment chose how much to invest in costly “virtual study materials” to

reach their desired threshold under a discrete policy and under a pooling policy. Additional

details are in Online Appendices 4 and 5. Online Appendix 6 contains all the experimental

materials subjects faced.

8.1 Main experimental results

Figure 10 shows subjects’ average utility by ability level under the discretized theoretical

pooling policy (panel a) and in the experiment (panel b). Overall, adopting the pooling

policy in the experiment increased aggregate welfare by 18.9 percent, closely matching the

theoretical prediction of 20 percent45.

45This theoretical prediction is computed for the discretized economy, which has a mix of the eleven ability
types shown in Figure 10. Since this economy is not identical to the continuous-type economy in Section 7,
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Figure 10: Average profits under the discrete and pooling policies: predictions and experimental data.

Considering the impact of the pooling policy on each ability level separately, we find

strong agreement with the theoretical predictions for low ability subjects: their welfare

increases by over 70 percent, close to the theoretical prediction of 65 percent in the discretized

model. The theoretical prediction for high ability subjects is that their utility should be the

same across the two policies. Instead, their welfare in the experiment decreased by 1.6

percent under the pooling policy. This was due to the behavior of subjects with ability levels

of 0.12, the lowest level among the high ability subjects (whose utility was predicted not to

change). These subjects opted to invest nothing and be assigned to the pooled set of colleges,

so they faced a lottery, instead of investing and obtaining a better and deterministic college

seat (further details are in Online Appendix 4).

Mapped to the Turkish student population, the experimental results imply that at least

85 percent of applicants should see their utility strictly or weakly increase, and at most 15

percent of the population may see their utility slightly decrease.

We explore possible reasons for the apparently suboptimal behavior of subjects with

ability 0.12. We argue in Online Appendix 4 that this behavior is unlikely due to mistakes,

experimental procedures, or risk-seeking behavior, and instead is consistent with preferences

for randomization. Dwenger, Kübler, and Weizsäcker (2016) explored such preferences in

the context of school applications and showed that up to 50 percent of individuals choose

lotteries between available allocations, indicating an explicit preference for randomization.46

the welfare gains reported here are not identical to those in Section 7.

46We also highlight that in our experiment the optimal choice for subjects with ability 0.12 without pooling
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9 Conclusion

This paper investigates how to improve college admissions based on centralized tests. Our

main message is that coarse performance disclosure policies can benefit all students, regard-

less of their ability, when test preparation is costly. These policies take a simple form and

are easy to implement. As a “proof of concept,” we empirically estimated the key theoret-

ical constructs using Turkish college admissions data. We used our theoretical results to

simulate the equilibrium outcome of a college admissions contest based on these estimates,

and demonstrated how to identify Pareto improving policies. We showed that a policy that

pools together the majority of the lowest-performing students would benefit the lower-ability

students the most, raising the welfare of the pooled students without impacting the welfare

of the other students. We also conducted a laboratory experiment based on these empirical

findings, which largely confirmed our theoretical predictions. Overall, our work suggests that

Pareto improving performance disclosure policies of the kind we investigated often exist and

have the potential to improve college admissions systems.

was still available in the round with pooling. Thus, these subjects could obtain the same utility in both
rounds by maintaining the same behavior. By revealed preference, those subjects with ability 0.12 who
switched to the lottery in the round with pooling were likely made better off, even though their monetary
payoff decreased slightly, which is consistent with a wide range of preferences.
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Appendices

A Proofs of Proposition 1, Theorem 1, Theorem 4, and

Theorem 5

Proof of Proposition 1. Part (a) follows because with pooling types x ≤ x∗ choose effort

tA (x) and obtain prize yA (x). For part (b), note that the utility of type x∗ is the same
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in the approximating mechanisms with and without pooling. By (5), in the approximating

mechanism of the original contest, the utility of a type x in (x∗, x∗∗] exceeds that of type x∗

by
∫ x
x∗
yA (x̃) dx̃. In the approximating mechanism with pooling, the utility of type x exceeds

that of type x∗ by

(x− x∗)
∫ x∗∗
x∗

yA (x̃) dF (x̃)

F (x∗∗)− F (x∗)
,

Thus, pooling increases the utility of type x if and only if (7) holds.

For part (c), note that the derivative with respect to x of the utility gain of type x is

∫ x∗∗
x∗

yA (x̃) dF (x̃)

F (x∗∗)− F (x∗)
− yA (x) . (12)

The fraction in (12) is a weighted average of yA (x̃) over types in (x∗, x∗∗], so (12) is positive

for types x close to x∗, monotonically decreases as x increases, and becomes negative for

types x close to x∗∗. Thus, the utility gain from pooling for types x in (x∗, x∗∗] first increases

and then decreases in the type. In particular, if not all prizes in the pooled interval are

identical, the utility of all types x in (x∗, x∗∗) strictly increases if the utility of type x∗∗

weakly increases. And the difference between the utilities of type x > x∗∗ and type x∗∗ is∫ x
x∗∗

yA (x̃) dx̃ in both approximating mechanisms, so pooling weakly benefits type x∗∗ if and

only if it weakly benefits type x = 1 if and only if it is Pareto improving, which gives part

(d).

Proof of Theorem 1. Suppose first that there is a type interval (x∗, x∗∗] on which F̂ is

linear but not all types in the interval obtain the same prize, and without loss of generality

suppose that [x∗, x∗∗] is maximal, that is, F̂ is not linear on any interval that strictly contains

[x∗, x∗∗]. By definition of F̂ , we have that F̂ (x∗) = F (x∗), F̂ (x∗∗) = F (x∗∗), and F̂ (x) ≥ F (x)

for every x in [x∗, x∗∗]. Thus, restricted to [x∗, x∗∗], F first-order stochastically dominates

F̂ . Therefore,

∫ x∗∗
x∗

yA(x̃)dF (x̃)

F (x∗∗)− F (x∗)
≥
∫ x∗∗
x∗

yA (x̃) dF̂ (x̃)

F̂ (x∗∗)− F̂ (x∗)
=

∫ x∗∗
x∗

yA (x̃) F̂ (x∗∗)−F̂ (x∗)
x∗∗−x∗ dx̃

F̂ (x∗∗)− F̂ (x∗)
=

∫ x∗∗
x∗

yA (x̃) dx̃

x∗∗ − x∗
,

where the first equality follows because F̂ is linear on [x∗, x∗∗], so part (d) of Proposition 1
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holds and pooling on (x∗, x∗∗] is Pareto improving.

For the other direction, suppose that on every interval on which F̂ is linear all types

obtain the same prize, and assume for contradiction that there exists a Pareto improving

category ranking I. Denote by (x∗, x∗∗] the lowest type interval in the category ranking

I that includes some types that strictly benefit from the category ranking.47 Since I is

Pareto improving, all types not higher than x∗ are indifferent between the baseline contest

and the category ranking. This implies that pooling on the single interval (x∗, x∗∗] is Pareto

improving. In particular, not all types in the interval obtain the same prize, otherwise

pooling on (x∗, x∗∗] has no effect. Let quantiles q∗ and q∗∗ and types x′ and x′′ be such that

q∗ = F̂ (x′) = F (x∗) and q∗∗ = F̂ (x′′) = F (x∗∗). Because F ≤ F̂ , we have that x′ ≤ x∗

and x′′ ≤ x∗∗. In addition, G−1 ◦ F = G−1 ◦ F̂ . Indeed, G−1(F (x)) = G−1(F̂ (x)) whenever

F (x) = F̂ (x). And for a type x with F (x) < F̂ (x), by definition F̂ is linear on an interval

that includes x. Consider the maximal interval on which F̂ is linear that includes x. All

the types in the interval obtain the same prize, and at the endpoints of the interval F and

F̂ coincide (by definition of F̂ ), so on this interval G−1 ◦ F and G−1 ◦ F̂ coincide. These

observations imply that

∫ x∗∗
x∗

yA(x̃)dF (x̃)

F (x∗∗)− F (x∗)
=

∫ x′′
x′
G−1(F̂ (x))dF̂ (x̃)

F̂ (x′′)− F̂ (x′)
≤
∫ x′′
x′
G−1(F̂ (x))dx̃

x′′ − x′
≤
∫ x∗∗
x∗

yA(x̃)dx̃

x∗∗ − x∗
, (13)

where the equality follows because both expressions are equal to the expected prize∫ q∗∗
q∗

G−1 (z) dz/ (q∗∗ − q∗) in quantile interval [q∗, q∗∗], the first inequality follows because F̂

is concave so is first-order stochastically dominated by the uniform distribution when both

are restricted to the interval [x′, x′′], and the second inequality follows because x′ ≤ x∗,

x′′ ≤ x∗∗, and G−1 ◦ F = G−1 ◦ F̂ . Moreover, the second inequality is strict if x′ < x∗ or

x′′ < x∗∗ because not all types in the interval (x∗, x∗∗] obtain the same prize. And the first

inequality is strict if x′ = x∗ and x′′ = x∗∗ because then not all types in (x′, x′′] obtain the

same prize and F̂ is strictly concave on [x′, x′′].

47Such an interval exists otherwise all types weakly prefer the baseline contest to the category ranking, so
the category ranking is not Pareto improving.
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We conclude that ∫ x∗∗
x∗

yA(x̃)dF (x̃)

F (x∗∗)− F (x∗)
<

∫ x∗∗
x∗

yA(x̃)dx̃

x∗∗ − x∗
,

so type x∗∗ is strictly harmed by pooling on type interval (x∗, x∗∗] (as are types slightly lower

than x∗∗), contradicting that pooling on (x∗, x∗∗] is Pareto improving.

Proof of Theorem 4. We first observe that any robust Pareto improving pooling

interval is contained in an interval on which F̂ is linear. To see this, take an interval (x∗, x∗∗]

that is not so contained. Consider a distribution G of prizes that gives the same prizes to

types in any interval on which F̂ is linear, and gives different prizes to all other types.48

Then the proof of the “if” direction of Theorem 1 shows that pooling on (x∗, x∗∗] hurts type

x∗∗ (and nearby types) because not all types in (x∗, x∗∗] obtain the same prize (since (x∗, x∗∗]

is not contained in an interval on which F̂ is linear). Thus, pooling on (x∗, x∗∗] is not robust

Pareto improving. Now, pooling on a maximal interval on which F̂ is linear is robust Pareto

improving by definition of F̂ and Proposition 4.

For the Pareto frontier, we show that if (x′, x′′] and (x∗, x∗∗] are robust Pareto improving

pooling intervals and (x′, x′′] ⊆ (x∗, x∗∗], then (x∗, x∗∗] is robust Pareto preferred to (x′, x′′].

This is because for any prize distribution G, pooling on interval (x′, x′′] is equivalent to using

a baseline contest in which types (x′, x′′] are allocated identical prizes that are the average

of the prizes they are allocated under G. Starting from this modified prize distribution and

pooling on the interval (x∗, x∗∗] is equivalent to pooling on the interval (x∗, x∗∗] directly,

which is robust Pareto improving. Finally, consider any two distinct maximal intervals on

which F̂ is linear. For each interval consider a prize distribution that gives all types below

the interval the same prize, all types above the interval the same prize, and different prizes

to the types in the interval. With this prize distribution pooling on the interval is Pareto

improving, but pooling on the other interval has no effect. Thus, neither of the two robust

Pareto improving intervals is robust Pareto preferred to the other.

Proof of Theorem 5. Similarly to the proof of Theorem 4, any interval that is part of

a robust Pareto improving category ranking is contained in an interval on which F̂ is linear,

pooling on maximal intervals on which F̂ is linear is robust Pareto improving by definition of

48For example, start with assigning prize y = x for every type x, and then for any maximal interval (x′, x′′]

on which F̂ is linear set the prize of every type in the interval to be the average of y = x′, and y = x′′.
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F̂ and Proposition 5, if every interval in one category ranking is contained in some interval of

another category ranking then the second is Pareto preferred to the first, and if one category

ranking contains a maximal interval on which F̂ is linear that is not contained in some other

category ranking, then the other category ranking is not robust Pareto preferred to the first.

Finally, taking a category ranking that consists of one or more maximal intervals on which F̂

is linear and adding to it another maximal interval on which F̂ is linear generates a category

ranking that is robust Pareto preferred to the original category ranking. This is because the

effect of the original category ranking is identical to the effect of using a baseline contest in

which the prizes allocated to each pooled interval of types are replaced with the same mass

of the average of these prizes, and then pooling on the additional maximal interval on which

F̂ is linear. This proves the result.

B Proofs of Theorems 2 and 3 (mean-preserving con-

tractions)

To prove Theorem 2, we will need the following two lemmas. The first lemma seems to

belong to “statistics folklore”. We give its proof for completeness; for simplicity, we will

restrict attention to continuous, strictly increasing G and H.

Lemma 1. Suppose that H and G are two CDFs of distributions with the same domain, say

[0, 1]. Then, H second-order stochastically dominates G if and only if

∫ z

0

[G−1(z̃)−H−1(z̃)]dz̃ ≤ 0 (14)

for all z, with equality for z = 1.

Proof. We will first prove necessity. Observe first that (14) holds whenever G−1(z) = H−1(z).

Indeed, in the system of coordinates with z on the vertical axis and with G−1(z) and H−1(z)

on the horizontal axis,
∫ z
0
G−1(z̃)dz̃ is the area between the graph of G−1, the vertical axis,

and the horizontal line at the level of z. This area is equal to the area of the rectangle

[0, G−1(z)] × [0, z] minus the area between the graph of G, the horizontal axis, and the
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vertical line at the level of G−1(z). Similarly,
∫ z
0
H−1(z̃)dz̃ is equal to the area of the rectangle

[0, H−1(z)]×[0, z] minus the area between the graph ofH, the horizontal axis, and the vertical

line at the level of H−1(z). Thus, (14) follows from the fact that

∫ x

0

G(x̃)dx̃ ≥
∫ x

0

H(x̃)dx̃

for all x (in particular x = G−1(z) = H−1(z)) when H second-order stochastically dominates

G.

Note here that the last inequality holds with equality for x = 1, by second-order domi-

nance, which yields (14) with equality for z = 1.

Suppose now that G−1(z) > H−1(z). Let z = min{z̃ ≥ z : G−1(z̃) = H−1(z̃)}. Then

∫ z

0

[G−1(z̃)−H−1(z̃)]dz̃ ≥
∫ z

0

[G−1(z̃)−H−1(z̃)]dz̃,

because G−1(z̃) ≥ H−1(z̃) for z̃ ∈ [z, z]. Thus, since (14) holds for z, it holds for z.

Suppose finally that G−1(z) < H−1(z). Let z = max{z̃ ≤ z : G−1(z̃) = H−1(z̃)}. Then

∫ z

0

[G−1(z̃)−H−1(z̃)]dz̃ ≤
∫ z

0

[G−1(z̃)−H−1(z̃)]dz̃,

because G−1(z̃) ≤ H−1(z̃) for z̃ ∈ [z, z]. Thus, since (14) holds for z, it holds for z. This

completes the proof of necessity.

The proof of sufficiency obtains by applying the proof of necessity to the functions G̃ =

H−1 and H̃ = G−1.

Lemma 2. Let f, g : [0, 1] → R be bounded Lebesgue measurable functions. Suppose that

f is weakly increasing and g has the property that
∫ 1

x
g(x̃)dx̃ ≥ 0 for every x ∈ (0, 1] and∫ 1

0
g(x̃)dx̃ = 0. Then

∫ 1

0
f(x̃)g(x̃)dx̃ ≥ 0. Moreover,

∫ 1

0
f(x̃)g(x̃)dx̃ > 0 if one of the

following conditions is satisfied: (a)
∫ 1

x
g(x̃)dx̃ > 0 for some x, and f is not constant on any

interval (x, x]; (b)
∫ 1

x
g(x̃)dx̃ > 0 for some x, and f is not constant on any interval [x, x).

Proof. Assume w.l.o.g. that f takes values in (0, 1). Otherwise, consider an affine trans-

formation cf + d of f with a positive slope c > 0, which takes values in (0, 1). The
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lemma for cf + d implies the lemma for f . Represent f as the pointwise limit of func-

tions fn =
n∑
i=1

(1/n)χAni , where Ani = {x ∈ [0, 1] : f(x) > i/n} and χAni takes value 1 on Ani

and value 0 on [0, 1]\Ani . Since f is weakly increasing, Ani = (xni , 1] or Ani = [xni , 1] for some

xni .

Since f , fn, and g are bounded,

∫ 1

0

f(x̃)g(x̃)dx̃ = lim
n

∫ 1

0

g(x̃)

[
n∑
i=1

(1/n)χAni (x̃)

]
dx̃

= lim
n

n∑
i=1

(1/n)

∫ 1

0

g(x̃)χAni (x̃)dx̃

= lim
n

n∑
i=1

(1/n)

∫ 1

xni

g(x̃)dx̃,

(15)

This yields the first part of the lemma, that is,
∫ 1

0
f(x̃)g(x̃)dx̃ ≥ 0, because

∫ 1

xni
g(x̃)dx̃ ≥ 0

for all i.

For part (a) of the second part of the lemma, notice that if
∫ 1

x
g(x̃)dx̃ > 0 for some x,

then there is a constant c > 0 such that
∫ 1

x
g(x̃)dx̃ > c for all x from an interval (x, x]. If

f is not constant on this interval, then for any large enough n there is a fraction of i’s that

is bounded away from zero such that xni ∈ (x, x]. This implies that the last sum in (15) is

bounded away from zero, uniformly across all large enough n’s. The argument for part (b)

is analogous.

We can now prove Theorem 2.

Proof of Theorem 2. The “only if” follows from the “only if” of Theorem 1. For

the other direction, suppose that for every interval of types on which F̂ is linear, in the

assortative allocation all the types in the interval obtain the same prize but there exists an

MPC H of G that is Pareto-improving. We can assume w.l.o.g. that the allocation under H

is also constant on every interval [x′, x′′] on which F̂ is linear; otherwise, it can be replaced by

its Pareto-improving contraction that pools each maximal such interval [x′, x′′]. This pooling

composed with H is a Pareto-improving MPC of G as a composition of two mappings with

these two properties.

The utility of type x = 1 when the prizes are distributed according to G and according
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to H are ∫ 1

0

G−1 ◦ F (x) dx and

∫ 1

0

H−1 ◦ F (x) dx,

respectively. Since in the assortative allocation all the types of any interval on which F̂ is

linear obtain the same prize, none of the two values will be affected when we replace F with

F̂ .

By substituting z = F̂ (x), we obtain that the utility of type x = 1 is

∫ 1

0

G−1(z)
1

f̂(F̂−1(z))
dz and

∫ 1

0

H−1(z)
1

f̂(F̂−1(z))
dz,

respectively. The difference between the two values is

∫ 1

0

[G−1(z)−H−1(z)]
1

f̂(F̂−1(z))
dz. (16)

Since H second-order stochastically dominates G, we have that
∫ z
0

[G−1(z̃)−H−1(z̃)]dz̃ ≤

0 for all z < 1, and
∫ 1

0
[G−1(z̃)−H−1(z̃)]dz̃ = 0. So,

∫ 1

z
[G−1(z̃)−H−1(z̃)]dz̃ ≥ 0 for all z < 1

and
∫ 1

0
[G−1(z̃) − H−1(z̃)]dz̃ = 0. Since F̂ is concave, 1/f̂(F̂−1(z)) is a weakly increasing

function of z. Thus, (16) is nonnegative by Lemma 2.

However, to show that the contraction H strictly decreases the utility of type x = 1

and obtain a contradiction, we must show that (16) is strictly positive. To show this,

we apply the second part of Lemma 2. To be Pareto improving, H must be a nontrivial

contraction, that is, it must be that
∫ 1

z
[G−1(z̃)−H−1(z̃)]dz̃ > 0 for some z ∈ (0, 1). Moreover,

we can assume w.l.o.g. that z = F (x′) or z = F (x′′) for a maximal interval [x′, x′′] on

which F̂ is linear. Indeed, since both G−1 and H−1 are constant on [F (x′), F (x′′)] for each

each such interval [x′, x′′], if
∫ 1

z
[G−1(z̃) − H−1(z̃)]dz̃ > 0 for some z ∈ [F (x′), F (x′′)], then∫ 1

z
[G−1(z̃) − H−1(z̃)]dz̃ > 0 for z = F (x′) or F (x′′). If z := z = F (x′), then f̂(F̂−1(z))

cannot be constant on any interval (z, z] because [x′, x′′] is maximal. If z := z = F (x′), then

f̂(F̂−1(z)) cannot be constant on any interval [z, z) because [x′, x′′] is maximal.

To prove Theorem 3 we need the following lemma.

Lemma 3. Let f : [0, x]→ R+ and h : [0, x]→ R be bounded Lebesgue measurable functions.

Suppose that f is weakly decreasing and h has the property that
∫ y
0
h(ỹ)dỹ ≥ 0 for every
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y ∈ (0, x]. Then
∫ x
0
f(x̃)g(x̃)dx̃ ≥ 0.

Proof. Assume w.l.o.g. that f takes values in [0, 1). Otherwise, consider a linear transfor-

mation cf of f with a positive slope c > 0, which takes values in (0, 1). The lemma for cf

implies the lemma for f . Represent f as the pointwise limit of functions fn =
n∑
i=1

(1/n)χAni ,

where Ani = {y ∈ [0, x] : f(y) > i/n} and χAni takes value 1 on Ani and value 0 on [0, x]\Ani .

Since f is weakly decreasing, Ani = [0, xni ] or Ani = [0, xni ) for some xni .

Since f , fn, and g are bounded,

∫ x

0

f(x̃)h(x̃)dx̃ = lim
n

∫ x

0

h(x̃)

[
n∑
i=1

(1/n)χAni (x̃)

]
dx̃

= lim
n

n∑
i=1

(1/n)

∫ x

0

g(x̃)χAni (x̃)dx̃

= lim
n

n∑
i=1

(1/n)

∫ xni

0

g(x̃)dx̃,

(17)

This completes the proof, because
∫ xni
0
g(x̃)dx̃ ≥ 0 for all n and i.

We can now prove Theorem 3.

Proof of Theorem 3. The “only if” direction follows from part (d) of Proposition 1,

similarly to the proof of the “only if” direction of Theorem 1. For the other direction, consider

an MPC H of G, and suppose that for every interval of types on which F̂ is linear, in the

allocation induced by H all the types in the interval obtain the same prize, but there exists

an MPC H̃ of G that Pareto improves on H. We can assume w.l.o.g. that the allocation

induced by H̃ is also constant on every interval [x′, x′′] on which F̂ is linear; otherwise, it can

be replaced by a Pareto-improving MPC that pools each maximal such interval [x′, x′′].49

We will show that H̃ must be an MPC of H. Since both H and H̃ are contractions of G,

∫ 1

0

(H̃)−1(x̃)dx̃ =

∫ 1

0

G−1 (x̃) dx̃ =

∫ 1

0

H−1 (x̃) dx̃.

49This pooling is a Pareto-improving MPC of G as a Pareto-improving MPC of the Pareto-improving
MPC H̃ of G.
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So, by Lemma 1, it remains to show that

∫ x

0

[(H̃)−1(x̃)−H−1 (x̃)]dx̃ ≥ 0 (18)

for all x ∈ (0, 1).

Since H̃ Pareto improves H, by (5) it must be that

∫ x

0

(H̃)−1 ◦ F (x̃) dx̃ ≥
∫ x

0

H−1 ◦ F (x̃) dx̃ (19)

for all x ∈ [0, 1]. And since both H and H̃ are constant on every interval [x′, x′′] on which F̂

is linear, we can replace F with F̂ in (19), that is,

∫ x

0

(H̃)−1 ◦ F̂ (x̃) dx̃ ≥
∫ x

0

H−1 ◦ F̂ (x̃) dx̃, (20)

for all x ∈ [0, 1]. By substituting ỹ = F̂ (x̃), (20) is equivalent to

∫ y

0

[(H̃)−1(ỹ)−H−1(ỹ)]
1

f̂(F̂−1(ỹ))
dỹ ≥ 0 (21)

for all y ∈ [0, 1].

Now, apply Lemma 3 to h(y) = [(H̃)−1(y) − H−1(y)]/f̂(F̂−1(y)) and f(y) = f̂(F̂−1(y))

(which is weakly decreasing in y since F̂ is concave) to obtain (18).

Thus, H̃ is an MPC of H. This is a contradiction to Theorem 2 applied to prize distri-

bution H, because for every interval [x′, x′′] on which F̂ is linear all types in [x′, x′′] obtain

the same prize in the allocation induced by H.

C Pareto frontier of category rankings

First, using Proposition 2, we will provide a method for checking whether a category ranking

belongs to the Pareto frontier of category rankings. Next, we use this method to show that

there is no Pareto-improving, category ranking of a category ranking that is constant on

each interval (x′, x′′] on which F̂ is linear. Finally, we give an example showing that there
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may exist Pareto-frontier category rankings that are not constant on some intervals (x′, x′′]

on which F̂ is linear.

Let I be a category ranking, and let x∗ < x∗∗ be a pair of types such that x∗ = a for an

interval I = (a, b] ∈ I or x∗ = d for {d} ∈ I, and x∗∗ ∈ I ′ ∈ I with I ′ 6= I. We define a

new category ranking I(x∗, x∗∗) that groups all types between x∗ and x∗∗ into one category

as follows: (i) if x∗ = a for an interval I = (a, b], and I ′ = (a′, b′], then replace I, I ′, and all

the elements of I between I and I ′ with (x∗, x∗∗] and (x∗∗, b′]; (ii) if x∗ = d for {d} ∈ I, and

I ′ = (a′, b′], then replace I ′ and all the elements of I between {d} and I ′ with (x∗, x∗∗] and

(x∗∗, b′]; if x∗ = a for an interval I = (a, b], and I ′ = {x∗∗}, then replace I, I ′, and all the

elements of I between I and I ′ with (x∗, x∗∗]; if x∗ = d for {d} ∈ I, and I ′ = {x∗∗}, then

replace I ′ and all the elements of I between {d} and I ′ with (x∗, x∗∗].

Proposition 6. A category ranking I belongs to the Pareto frontier of category rankings if

and only if there is no pair of types x∗ < x∗∗ such that

x∗ = a for some I = (a, b] ∈ I or x∗ = d for some I = {d} ∈ I and x∗∗ ∈ I ′ 6= I ∈ I,

and type x∗∗ weakly prefers ranking I(x∗, x∗∗) to ranking I.

Proof of Proposition 6. It will be helpful to provide first a general formula for the

utility of type x ∈ [0, 1] under category ranking I. This utility exceeds U (x) given by (5)

by the expression

∑
(ã,b̃]∈I,ã<b̃<x

[
(b̃− ã)

∫ b̃
ã
yA (x̃) dF (x̃)

F (b̃)− F (ã)
−
∫ b̃

ã

yA (x̃) dx̃

]
+ (22)

(x− a)

∫ b
a
yA (x̃) dF (x̃)

F (b)− F (a)
−
∫ x

a

yA (x̃) dx̃ for x ∈ (a, b] ∈ I.

This formula follows directly from the fact that types x̃ ∈ (a, b] ∈ I obtain a fair lottery over

prizes yA(x̃′) for x̃′ ∈ (a, b].

We will first show that when a pair x∗ < x∗∗ satisfies the condition in Proposition 6, the

category ranking J = I(x∗, x∗∗) Pareto improves over I. Types x ∈ [0, x∗] are indifferent

between the two category rankings, because their allocation and performance are the same
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in both cases. By assumption, the utility of type x∗∗ is no lower under J than under I. We

will now show that the utility of types x ∈ (x∗, x∗∗) is strictly higher under J than under I.

Indeed, the derivative on (x∗, x∗∗] of type x’s utility under J , UJ (x), is constant and equal

to ∫ x∗∗
x∗

yA (x̃) dF (x̃)

F (x∗∗)− F (x∗)
.

In turn, the derivative on (x∗, x∗∗] of type x’s utility under I, UI(x), is equal to yA (x) if x

does not belong to any non-degenerate interval (a, b] ∈ I, and is equal to

∫ b
a
yA (x̃) dF (x̃)

F (b)− F (a)

if x ∈ (a, b] ∈ I. This means that the derivative increases in x, and increases strictly except

on intervals (a, b] ∈ I. So, UI(x) is a convex non-linear function. Since UJ (x) is linear on

(x∗, x∗∗], UI(x∗) = UJ (x∗), and UI(x∗∗) ≤ UJ (x∗∗), we obtain that UI(x) ≤ UJ (x) for all

x ∈ (x∗, x∗∗], and the inequality is strict for all types x ∈ (x∗, x∗∗]. Similarly, the derivative

of UJ (x) on (x∗∗, b′] exceeds that of UI(x) if a′ < x∗∗ < b′ for some (a′, b′] ∈ I, and the two

derivatives are equal for x > b′, which completes the proof that J Pareto improves over I.

Suppose now that another category ranking I ′ Pareto improves over I. Recall that

I consists of singletons and a finite number of intervals (x1, x
′
1], (x2, x

′
2], ..., (xk, x

′
k], with

x′i < xi+1. Denote by x′ the highest type such that I and I ′ coincide up to x′, and suppose

that x′ is the lower endpoint of an interval (xl, x
′
l] in I. (A similar argument to the one that

follows applies if x′ is a singleton.)

Then x′ must be the lower endpoint of a non-trivial interval in I ′. Denote this interval

by (x∗, x∗∗], where x′ = x∗ < x∗∗. Otherwise, for types x slightly higher than xl the utility

of these types under I would exceed their utility under I ′ by (22). It also cannot be that

x∗∗ < x′l, since it would then follow from (22) that x∗∗ strictly prefers I to I ′.

Thus x′l < x∗∗, and since I ′ Pareto improves over I, type x∗∗ weakly prefers I ′ to I.

And since (by (22)) the payoff of type x∗∗ under any ranking depends only on the inter-

vals up to the one that contains x∗∗, type x∗∗ is indifferent between ranking I ′ and ranking

J = I(x∗, x∗∗), and therefore prefers ranking J to ranking I.
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Proposition 6 provides a method for checking whether a category ranking belongs to

the Pareto frontier of category rankings. Proposition 6 and the arguments developed for

the proof of Theorem 2 enable us to derive the simpler to pursue sufficient condition in

Proposition 3 for a category ranking to be an element of the Pareto frontier of category

rankings.

Proof of Proposition 3. Theorem 2 establishes that there is no Pareto-improving,

mean-preserving contraction of the category ranking I that is constant on each interval

(x′, x′′] on which F̂ is linear. In particular, there is no such category ranking. However, this

does not yet mean that I is on the Pareto frontier. It could be dominated by a category

ranking that is not a contraction of I. The rest of our proof is devoted to showing that this

is impossible.

Suppose that the allocation induced by I is constant on all intervals on which F̂ is linear,

but I is not on the Pareto frontier. Then there exist a pair of types x∗ < x∗∗ described in

Proposition 6. In particular, type x∗∗ weakly prefers ranking I(x∗, x∗∗) to ranking I. Define

another ranking I ′ that is obtained from ranking I by changing the interval I ′ = (a′, b′]

(from Proposition 6). If x∗∗ ∈ (a′, b′), then I ′ = (a′, b′] is replaced with two intervals: (a′, x∗∗]

and (x∗∗, b′]. Otherwise, that is, if I ′ = {x∗∗} or x∗∗ = b′, then I ′ = I.

We will now show that types x ≤ x∗∗ weakly prefer ranking I(x∗, x∗∗) to ranking I ′. Note

first that type x∗∗ weakly prefers I to I ′. This is so, because type x∗ is indifferent between

the two rankings, and the difference between the payoff of x ∈ [x∗, x∗∗] and the payoff of

x∗ increases faster under I than under I ′. Compare now ranking I(x∗, x∗∗) to ranking I ′.

Types x ≤ a (where I = (a, b] in Proposition 6) are indifferent. Further, as observed in

the proof of Proposition 6, the payoff of type x is a convex function of x. Since this payoff

function is linear on [a, x∗∗] for I(x∗, x∗∗), and types a and x∗∗ weakly prefer I(x∗, x∗∗), so

must do all types x ∈ [a, x∗∗]. (Type x∗∗ prefers I(x∗, x∗∗) to I by Proposition 6, and we

have noticed earlier that x∗∗ prefers I to I ′.)

Suppose first that x∗∗ does not belong to the interior of any interval on which F̂ is linear.

Then, ranking I(x∗, x∗∗) restricted to interval [0, x∗∗] Pareto dominates ranking I ′ restricted

to this interval. However, this contradicts Theorem 4 from Appendix D, because I(x∗, x∗∗) is
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a mean-preserving contraction of I ′ on [0, x∗∗], and the allocation induced by I ′ is constant

on any interval on which F̂ is linear.

So, suppose that x∗∗ belongs to the interior of an interval on which F̂ is linear. Take the

longest interval (x′, x′′] that contains x∗∗ on which F̂ is linear. It exists because the union

of intervals that contain x∗∗ on which F̂ is linear also has the two properties. This longest

interval must be contained in an interval of ranking I, because the allocation induced by I

is constant on any interval on which F̂ is linear. So, (x′, x∗∗] is contained in an interval of

ranking I ′ restricted to [0, x∗∗]. (More precisely, it is contained in I ′ ∩ [0, x∗∗].) This implies

that the allocation induced by I ′ on [0, x∗∗] is constant on any interval on which F̂ is linear.

Since ranking I(x∗, x∗∗) restricted to [0, x∗∗] is a mean-preserving contraction of ranking I ′

restricted to [0, x∗∗], I(x∗, x∗∗) cannot Pareto dominate I ′ on [0, x∗∗].

The following example shows that the Pareto frontier of Pareto-improving category rank-

ings may include category rankings that do not satisfy the condition in Proposition 3.

Example 2. Let G be the CDF of two prizes: 0 and 1, with mass 1/2 on each. Let F be a

strictly increasing CDF that satisfies the following conditions: (a) F (1/2) = 1/2; (b) there is

an x∗ > 3/4 such that 1 = (1/2)/F (1/2) > x∗/F (x∗) and x/F (x) > x∗/F (x∗) for all x > x∗.

We will not describe any parametric CDF with these properties, but it is easy to show that

such CDFs exist just by drawing them.

Consider a category ranking I that consists of two intervals: [0, x∗] and (x∗, 1]. We claim

that this category ranking is on the Pareto frontier of category rankings. To see why, notice

first that any category ranking J that Pareto dominated I would have to have an interval

[0, x] for some x ≥ x∗. Indeed, types sufficiently close to 0 would be worse off otherwise.

(By condition (a), they would obtain a prize of 1 with a lower probability.) Notice next that

pooling the types from (x, 1] would have no welfare effects. Therefore, if there is a category

ranking that Pareto dominates I, then a category ranking J that consists of two intervals:

[0, x] and (x, 1], where x > x∗, also Pareto dominates I.

We will show that type 1 is worse off under J than under I, and in this manner we

will obtain a contradiction. Under both category rankings, type 1 obtains prize 1. The
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performance required to obtain this prize in J and in I is determined by the indifference

condition of types x and x∗, respectively. The first condition is

x
F (x)− F (1/2)

F (x)
= x− t,

and the second condition obtains by replacing x with x∗. Thus,

t = x
F (1/2)

F (x)
and t∗ = x∗

F (1/2)

F (x∗)
.

This completes the argument because t > t∗ by the second part of condition (b).

It remains to show that I Pareto improves on the assortative allocation. Indeed, types

from [1/2, 1] are better off because of the first part of condition (b). And types from [0, 1/2]

are better off because I gives them a chance to obtain a prize of 1 at zero effort.

D Peer effects

We can model peer effects in a way that does not change any of our results and requires

only a transformation of the prize distribution. The idea is that each student exerts a type-

dependant effect on all her peers (those attending the same college), and the effects are

additive. We will show that such peer effects fit into our framework, as does the change in

the endogenous set of peers brought about by pooling. Of course, other ways of modeling

peer effects would lead to different impacts of pooling because of the change in peers that

pooling induces.

We will consider a limit prize distribution that consists of a finite number of atoms,

where each atom represents a mass of seats in a particular college. Students who attend

a particular college experience peer effects from other students attending the same college.

To model this, denote by I (y) the set of players admitted to university y (for a particular

realization of types and bids). The utility of a player of type x admitted to university y by
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bidding t is

xy + x

∑
i∈I(y) p (xi)

|I (y)|
− c (t) = x

(
y +

∑
i∈I(y) p (xi)

|I (y)|

)
︸ ︷︷ ︸

ỹ

− c (t) ,

where p (xi) captures the peer effect exerted by a player of type xi. We refer to ỹ as the

effective prize for player i, which is the sum of the value of the college and the average peers

effects of the other students attending the college. Note that the effective prize depends on

the allocation of prizes to students.

For the approximation, consider a mechanism that implements the assortative allocation

of prizes to types. Then, for each prize y in the support of the limit prize distribution G we

have that the effective prize is

ỹ = y +

∫ xyH
xyL

p (x̃) dF (x̃)

F (xyH)− F (xyL)
=

∫ xyH
xyL

(y + p (x̃)) dF (x̃)

F (xyH)− F (xyL)
, (23)

where (xyL, x
y
H) is the interval of types that are allocated prize y in the assortative allocation

(so xyL = F−1 (limy′↑y G (y′)) and xyH = F−1 (G (y))). Now, replace the limit prize distribution

G with distribution G̃ in which every prize y is replaced with the effective prize ỹ. The

assortative allocation yA is replaced with ỹA, so ỹA (x) is the effective prize for type x under

the assortative allocation. While Olszewski and Siegel’s (2016) large contest framework does

not formally accommodate prizes whose values depend on their allocation, it is easy to show

that the behavior specified by the mechanism forms an ε-equilibrium for sufficiently large

contests. And all our results on the characterization of Pareto improvements continue to

hold for this mechanism, as we now show.

To see this, it is enough to consider two consecutive prizes and determine the effect of

pooling all the types that are allocated these prizes. Denote by y < y′ two consecutive

prizes in the support of the limit prize distribution G, so y = yA (x) for x in (xyL, x
y
H ] and

y′ = yA (x) for x in (xy
′

L , x
y′

H ] (with xyH = xy
′

L ). By pooling types on interval [xyL, x
y′

H ], the two

prizes y and y′ are combined to create an average prize y′′. The corresponding effective prize
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is

ỹ′′ =

∫ xyH
xyL

ydF (x̃) +
∫ xy′H
xy
′
L

y′dF (x̃) +
∫ xy′H
xyL

p (x̃) dF (x̃)

F (xy
′

H)− F (xyL)

=
(F (xyH)− F (xyL)) ỹ +

(
F
(
xy
′

H

)
− F

(
xy
′

L

))
ỹ′

F (xy
′

H)− F (xyL)

=

∫ xyH
xyL

ỹA (x̃) dF (x̃) +
∫ xy′H
xy
′
L

ỹA (x̃) dF (x̃)

F (xy
′

H)− F (xyL)

=

∫ xy′H
xyL

ỹA (x̃) dF (x̃)

F (xy
′

H)− F (xyL)
,

where the first equality follows from (23). As in the proof of Proposition 1, pooling is Pareto

improving if and only if

∫ xy′H
xyL

ỹA (x) dF (x)

F (xy
′

H)− F (xyL)
≥

∫ xy′H
xyL

ỹA (x) dx

xy
′

H − x
y
L

.
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1 Modeling the Turkish system

The students play a game in a stationary overlapping generations environment with a unit

mass of college-bound students graduating from high school each year. Each student is

solving a single-agent infinite-horizon dynamic problem. The time periods in this problem

correspond to the last year in the middle school, first attempt at the college entrance exam

and all the subsequent years.

Figure 1.1 summarizes the timing of the model and the shocks affecting students. Each

student chooses the type of high school and tutoring in high school, which affects the college

placement score at graduation. Then, the student decides whether to retake the exam or

accept placement. Students who retake draw a new set of shocks to the score, and decide

whether to retake again. The decisions on high school choice, tutoring and retaking constitute

the game strategy. In each period, the student faces uncertainty over future exam scores. In

this section, we outline student’s decision problem and characterize the steady state Markov

perfect equilibrium of this game.

1.1 High school period

Before enrolling into high school, the student chooses one of the three broad types of high

school (public, private and Anatolian/science) and whether to get private tutoring. The

respective choices of student i are denoted as hsi ∈ HS = {PUB,PRIV,ANAT SC} and

pti ∈ {0, 1}. In total, there are six combinations to choose from: public school with no

tutoring, public school with tutoring, private school with no tutoring, and so on.

1.1.1 Costs of schooling

Before making the choice (hsi, pti), student i observes X0i, a vector of her own background

characteristics; this includes parental education, internet access, how the student is planning

to fund her education, and the population of the city of the high school attended. The

student also knows gi0, her middle-school GPA that takes one of three values (A,B or C).

Schooling choices are associated with costs, which capture the fees and effort of keeping

up with curriculum. Choosing high school category hs and private tutoring pt entails a cost
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of

ci(hs, pt) = γgi0(hs, pt) + ui,hs + vi,pt + wi,hs,pt,

hs ∈ {PUB,PRIV,ANAT SC}, pt ∈ {0, 1}, (24)

This allows costs to vary with middle school GPA, which serves an early signal of ability

for the student. The coefficients γ vary across choices (hs, pt). Schooling costs also depend

on unobservables ui, vi and wi. The first two reflect costs specific to formal schooling and

private tutoring respectively. Idiosyncratic shocks wi,hs,pt are independently drawn from the

standard Gumbel distribution for each (i, hs, pt). Public school with no tutoring is set as the

baseline option so that γPUB,0,g0 = ui,PUB = vi,0 = 0. We assume that the remaining shocks

[ui,PRIV , ui,ANAT SC , vi,1] are jointly normal with a zero mean and a covariance matrix, Σc.

1.1.2 Schooling choices and payoffs

Choice of schooling (hs, pt) affects expected college placement scores in the subsequent pe-

riods. Student i’s placement score after high school is given by

si1(hs, pt) = ρgi0(hs, pt) +Xi0χgi0︸ ︷︷ ︸
ti0(hs,pt)

+λi1 + εi1 (25)

Parameter ρgi0(hs, pt) captures the effect of schooling on the expected score, while χ controls

for demographics, Xi0. The subscript gi0 indicates that the parameters can vary with middle

school GPA. The composite error term (λi1 + εi1) represents the shock to the score, with

λi1 capturing its persistent part (“learning”) and εi1 being transitory noise. It is convenient

to combine the first two terms and label them as ti0, i’s expected score conditional on the

observables, Xi0 and gi0, and effort, (hsi, pti).

In the theoretical model, there is no uncertainty, and we have the variable t, which is

the score of the student. In our structural model, there is randomness, which is why the

expected score ti0 is the counterpart of t in the theoretical model.
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The student’s objective is to maximize the expected net payoff

max
(hs,pt)

[bW (ti0(hs, pt))− ci(hs, pt)] (26)

conditional on the observables and the cost shocks. The function W (ti0), captures the net

present value of aiming for the expected placement score ti0 at graduation from high school,

and b is the coefficient on it. We flesh out the definition of W in the following section. The

choices in high school and the their consequences are depicted in Figure 1.1. The arrows

show the direction of influence.

λi1

ti1

si1

εi1

X0i

(pti, hsi)

(ui, vi, wi)

. . .

. . .

. . .

. . .

High school Attempt 1

λi2

ti2

si2

εi2

Attempt 2

Learning shocks

State variables

Placement scores

Transitory shocks

Demographics

Schooling choice

Cost shocks

Attempts 3, 4, . . .

Figure 1.1: Shocks affecting students and their timing

We assume that students do not have private information about λi1 when they make

schooling choices; their expectations of the future scores are fully formed by the observables

contained in Xi0 and the GPA gi0. The learning shock λi1 and the transitory noise εi1 do

not affect this choice, which rules out endogenous selection into schooling choices. Figure

1.1 illustrates this by the absence of arrows coming from λi1 and εi1 to schooling choices.

1.2 College placement periods and retaking choices

In periods τ = 1, 2, . . . , students take the college entrance exam and, after each attempt,

decide whether to be placed or keep taking the exam. Student’s placement score in period

τ is given by

siτ = tiτ + εiτ , where tiτ = tiτ−1 + λiτ .
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The pair (tiτ , εiτ ) defines student’s state in period τ . Both shocks, λiτ and εiτ , are drawn

independently from the normal distribution and are only revealed to the student at the

beginning of period τ as illustrated in Figure 1.1.

Once the student learns λiτ and εiτ , she can retake the exam or get placed with the score

siτ determining her placement ranking. Only the latest score matters for placement. Once

the student is placed, she cannot take the exam again.

To formally characterize this decision problem, let Vτ be the value function for attempt

τ and V Rτ be the expected payoff from retaking:50

Vτ (tiτ , εiτ ) = max {U (r∗ (tiτ + εiτ )) , V Rτ (tiτ )} (27)

V Rτ (tiτ ) = δEλiτ+1,εiτ+1
[Vτ+1 (tiτ + λiτ+1, εiτ+1)| tiτ ]− ψτ .

where U(·) is a non-decreasing function mapping one’s ranking in college placement to utility,

r∗(s) maps placement score to ranking, ψτ is the cost of retaking and δ is the discount rate.

The student’s state is captured by the persistent part of the score, tiτ and the transitory

shock, εiτ . The expectation in the second line of equation (27) is taken over the shocks

drawn in attempt τ + 1, λiτ+1 and εiτ+1.

The utility function U(r) is a structural parameter of the problem and is one of the key

objects that map the empirical component to the theory.51 We assume, as in the theoretical

model, that all students have the same preferences so that being placed in a college seat

ranked r delivers the same payoff U(r) to any student. The ranking function r∗(·) is an

equilibrium object, so it will change with the demand and supply of college seats.

Since ti0 is affected by investments made in high school, the value of effort is related to

W (ti0(hs, pt)), the expectation of V1 at the time before the shocks λi1 and εi1 are realized,

but after the schooling choices (hsi, pti) have already been made:

W (ti0(hs, pt)) = Eλi1,εi1 [V1(ti0(hs, pt) + λi1, εi1)|ti0(hs, pt)] (28)

50Note that tiτ carries over to the next period, while εiτ does not. This is why V R is a function of tiτ ,
but not of εiτ .

51Recall that in the theoretical model, the distribution of prizes, y, is G(y). This function gives the ranking
needed to get the prize y. Therefore, r = G(y), or y = G−1(r). Since the prize y is the counterpart of utility
U(·), U(r) = G−1(r).
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Thus, the valuations of the schooling choices in problem (26) are directly derived from the

impact these choices have on subsequent placement outcomes in periods τ = 1, 2, . . . .

1.3 Equilibrium

In equilibrium, the strategies of all students and the supply of college seats determine the

mapping r∗(s), and the mapping determines the strategies so that the actions and the expec-

tations are aligned. Student i’s strategy is the best response to r∗. This strategy prescribes

schooling choices in period τ = 0 and retaking decisions in τ = 1, 2, . . . for each feasible

state (tiτ , εiτ ).

We restrict ourselves to stationary Markov-perfect equilibria in this game. In this equilib-

rium, a new cohort of students enters high school every period. Each student is infinitesimally

small; there is a unit mass of students in the cohort. The distributions of demographics,

middle-school GPA and all the shocks are the same in all cohorts.

There is a unit mass of college seats. As the equilibrium is stationary, all seats are filled

each period so that the number of students entering the game matches the number of those

who leave. As a result, the mass and the composition of retakers will also be constant in the

stationary equilibrium. Consequently, the ranking function r∗(·) is not changing over time.

In equilibrium, given the ranking function r∗(s) students play their optimal strategies:

the choice of schooling maximizes the payoff in (26), while the retaking strategy (29) is a

solution to the Bellman’s equation (27). Each student ignores her own impact on r∗ as she

is infinitesimally small.

The highest ranking is r∗ = 1, while the lowest one is r∗ = 0.52 The rank of a student

with score s, r∗(s), is one minus the mass of students from all the active cohorts (which

include the current cohort and retakers) who are: (a) not yet placed, (b) whose optimal

strategies call for placement in the current period, and (c) whose scores are greater or equal

to s.

The optimal retaking strategy can be characterized by a threshold rule. As the placement

utility, U(r), is non-decreasing in r, and the ranking function, r∗(s), is non-decreasing in s,

52Off-equilibrium, r∗ < 0 is possible; this corresponds to not being placed anywhere in the current period.
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the payoff from being placed, U(r∗(tiτ + εiτ )) is non-decreasing in εiτ . Since the value of

retaking, V Rτ , does not depend on εiτ , while U (r∗ (tiτ + εiτ )) does, student’s decision should

follow a simple threshold rule: retake in attempt τ if

εiτ < eτ (tiτ ). (29)

where eτ (tiτ ) denotes the retaking threshold for i.

2 Estimation strategy

Our goal is to estimate the model’s structural parameters. We proceed in five steps:

1. We estimate the variances of the score shocks in the first attempt, σλ1 and σε1.

2. Then, we turn to the dynamic problem (27). Our objective here is to find the parame-

ters of the learning shock distributions, µλτ and σλτ , τ = 2, 3, . . . , which determine how

student states evolve over attempts. We also non-parametrically estimate the cutoff

function eτ (tiτ ), which describes the equilibrium retaking strategy (29).

3. We use the above estimates to find payoff-related parameters: the costs of retaking, ψτ ,

and the placement payoff function, U(r). The latter is identified non-parametrically

for all values of r ∈ [0, 1] using a flexible approximation.

4. Next, we estimate the improvement in score associated with each level of pre-test effort

and the coefficients for predicting the score based on demographics, ρgi0(hs, pt) and χgi0

in (25).

5. Lastly, we recover cost and benefit parameters γhs,pt(gi0), b and Σc that rationalize

schooling choices in problem (26).

2.1 Step 1: distribution of λi1 and εi1.

Our main objective in this step is to obtain the residual in the score equation (25) for the

first attempt that cannot be explained by observable demographics or the choice of schooling
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and attribute its variation to two parts: λi1, which represents immutable ability, and εi1,

which stands for pure randomness.

The exam consists of four subject sections: mathematics, natural sciences, social stud-

ies and Turkish language. The unexplained gains in score during high school that persist

between the exam attempts are also likely to affect all exam sections in the same attempt.

For example, having a good fit between the student and the school would raise GPA and

performance in all subjects and attempts. Conversely, shocks that reflect pure luck are

unlikely to affect scores across all subjects or survive between attempts. Following this intu-

ition, we separate the unexplained variation in score that persists across subjects from the

subject-specific variation, and attribute the former to λi1, and the latter to εi1.

More formally, let the subject exam scores in the first attempt and the high school GPA

be specified as follows:

sij1 = X ′iβj + θivαjv + θiqαjq + εij1, j ∈ {Math,NatSci, SocStudies, Turkish} (30)

gi = X ′iβg + θivαgv + θiqαgq + εig

The vector Xi includes observable student characteristics, pre-test schooling choices and tu-

toring. Gains in student ability during high school unexplained by these observables are

captured by student-specific common factors θi = (θiq, θiv), which drive persistent perfor-

mance in quantitative and verbal tasks, while (εij1, εig) are the idiosyncratic shocks. The

weights on θi reflect the relevance of each skill for each subject.53 Abilities captured by

(θiq, θiv) will therefore affect performance across the board, in multiple subjects and be-

tween the attempts. In contrast, idiosyncratic gains captured by (εij1, εig) are attempt- and

subject-specific.

We start step 1 by estimating the coefficients (βj, βg) in equations (30) using OLS on the

sample of first-time takers. The residuals represent θ′iαj + εij1 and θ′iαg + εig. To recover

the distribution of (θi, εij1, εig), we assume that all these shocks are jointly normal and

independent with the exception of θiq and θiv, which can be correlated as a good match of

53The loadings in the math and Turkish equations are normalized to αM = [1, 0]′ and αT = [0, 1]′ re-
spectively: in other words, quantitative ability is a common factor that affects the math score but not the
Turkish score and vice versa for verbal ability.
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the school and the student would likely affect both verbal and quantitative skills. Let Rig

and Rij be the residuals from the GPA and the subject score equations. The covariance

matrix for the vector Ri = [Rig, RiM , RiT , RiSc, RiSS]′ is related to the factor loadings, the

variances of the idiosyncratic shocks and the covariance matrix of θi as follows:

V ar[Ri] = α′Σθα + Σε, (31)

where α denotes the matrix of factor loadings and Σε is a matrix with the variances of εig

and εij1’s on the main diagonal. Parameters α, Σθ and Σε, which capture the distribution

of unobservables, are estimated via GMM using equations in (31) as the identifying moment

conditions.

Note that the aggregate exam score, which is used to determine the placement rank, is

composed of the subject scores and the GPA with the weights w54. This connects the factor

model in (30) to the earlier notation in equation (25):

si1 = Xi

(∑
j

βjwj + wgβg

)
︸ ︷︷ ︸

ti0

+ θ′i

(∑
j

αjwj + αgwg

)
︸ ︷︷ ︸

λi1

+

(∑
j

εij1wj + εigwg

)
︸ ︷︷ ︸

εi1

2.2 Step 2: State transitions and students’ policy function

This subsection and the ones that follow are almost exactly the same as sections 3 and 4 in

Krishna et al (2018). Needed changes in notation have been made.

Estimating gains in student scores between the exam attempts is confronted by two

obstacles. First, retaking is endogenous and can be partly driven by student’s known ability.

Second, as we only observe one cross section of exam takers, we can only identify learning

gains by comparing cohorts rather than by tracking individual students and their scores

between exam attempts.

Our estimation strategy is inspired by the conditional choice probability approach.55 We

impose the exclusion restriction that high school GPA is not directly related to retaking.

54These weights are given by the central exam authority.

55For example, see Hotz and Miller (1993).
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In other words, conditional on the noise-free score, tiτ , we assume that just having a high

GPA does not make one more or less likely to retake. This makes the GPA distribution of

repeat takers differ from that of first time takers only because of selection. The distribution of

exam scores of repeat takers, in contrast, is affected by both selection and learning. Thus, by

comparing the distributions of scores and GPAs across attempts, we are able to distinguish

learning from selection. We assume steady state so that second time takers in a given year

can be thought of as identical to retakers from today’s cohort of first time takers and so on.

Below we depict how selection and learning operate in a very simple example that high-

lights the essential intuition. We use first and second time takers for concreteness. Assume

there are two types, labeled high and low, with half of the agents being of each type. GPA

and the placement scores in the two attempts are

gi = θi + εig,

si1 = θi + εi1,

si2 = θi + λi2 + εi2,

where θi = 2 for i if she is a high type and θi = 1 if she is a low type. The shocks εig, εi1, εi2

are drawn from a uniform distribution over [−1, 1]. Learning shocks are deterministic and

the same for both types, so λi2 = λ̄.56

The joint distribution of gi and si1 for the universe of agents is depicted in Figure 2.1,

where we have the high school GPA and the placement score on the two axes. The shaded

lower left square corresponds to the low type, while the shaded upper right one depicts the

high type. The retaking rule is to retake if εi1 < e1(ti1) and hence if si1 < ti1+ e1(ti1).

Thus, the low type retakes if her score si1 is below 1 + e1(1), and the high type does so when

si1 < 2 + e1(2).57 In this simple model, ti1 is just θi so that the two types have different

cutoffs; for example they could be as depicted by the two vertical dashed lines in Figure 2.1.

56Note that this example differs from the estimated model as it assumes placement scores do not include
GPA as a component (i.e., wig = 0). As a result, retaking cutoffs vary only by ability type. In contrast, in
our estimated model, retaking cutoffs depend on the permanent part of the score (i.e., type), which includes
the GPA among other components of the score.

57This rule depends on the shape of the utility function.
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Figure 2.1: Identifying learning and selection using scores and high school GPA

Notes: The boxes inside the diagram depict the joint distributions of scores and GPAs in attempts 1 and 2.

The histograms at the top are marginal distributions of scores (inflated by the number of students). The

histograms on the right hand side of the diagram show marginal distributions of GPA. Distributions

related to the first attempt are shaded, while distribution of second time takers are in white. The dashed

lines depict the retaking thresholds, tiτ + e1(tiτ ), for each student type.

We have low types being more likely to retake in this figure. The shaded histograms on the

right and the top of the figure denote the marginal distribution of GPA and scores among

first time takers, respectively.

The unshaded histograms depict the distributions of GPA and scores, joint and marginal,

of second time takers. Half the high type and three quarters of the low type of agents retake.

This results in the mass in the upper tail of the GPA distribution of second time takers being

lower than that in the lower tail. The learning shocks are depicted by the arrows. Given

our assumptions on learning shocks, the distribution of scores moves to the right by λ̄. The

number in each unshaded box is equal to the mass of second-time takers there. The total

mass equals the share of first time takers who choose to retake.

We identify the cutoff scores for the two types by comparing the distributions of GPAs of

first and second time takers. The mass at any point in the upper tail of the GPA distribution

of second time takers gives us the cutoff for the high type, while the mass at any point in the

lower tail pins down the cutoff for the low type. The shift in the score distribution between

the first and second attempt pins down the learning shock. If learning shocks are stochastic,

in addition to being shifted to the right as depicted in Figure 2.1, the distribution of scores

gains more variance due to variation in λi2. This extra variance allows us to identify σ2
λ2, the

variance of learning shocks in attempt 2. A similar argument applies to third versus second

time takers, and so on.
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2.2.1 Estimation algorithm for attempts 1–3.
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Figure 2.2: Sets of GPAs and scores used to construct the GMM estimator

The retaking threshold function and the parameters of learning shocks, eτ (t), µλτ+1 and

σλτ+1, are estimated sequentially using a separate GMM routine for each attempt τ = 1, 2, 3.

This GMM estimator is designed to match predicted numbers of exam takers whose GPAs

and scores fall into sets Ω1, . . . ,Ω9, depicted in Figure 2.2. The horizontal lines in this figure

are the 1st and the 2nd tercile of the GPA distribution, while the vertical lines are exam

score terciles conditional on GPA being between the respective horizontal lines.

Let Tiτ = [ti1 . . . tiτ ] denote the trajectory of noise-free scores that student i would face if

she takes the exam at least τ times, and F(Tiτ |siτ , gi, Xi) be the probability measure in the

space of such trajectories conditional on the observables in attempt τ . Let aiτ be a dummy

that equals one if i is not placed after τ attempts. The set of moment conditions that are

used to estimate eτ (·), µλτ and σλτ take the following form:

Pr[(gi, siτ+1) ∈ Ωk, aiτ+1 = 1|aiτ = 1] =

∫ [∫
Pr{aiτ = 1|Tiτ}Φ

(
eτ (tiτ )

σε

)
× Pr{(gi, siτ+1) ∈ Ωk|gi, tiτ ;µλτ+1, σλτ+1}dF(Tiτ |siτ , gi, Xi)

]
dG(siτ , gi, Xi|aiτ = 1)

Pr{aiτ = 1|siτ , gi, Xi}

k = 1, . . . , 9. (32)

where G denotes the distribution of the observables among τ -time takers.

The expression on the right hand side of (32) predicts the share of applicants who retakes

after attempt τ and whose score-GPA combination in attempt τ+1 ends up in the cell Ωk. We

take an expectation over all observables among τ -time takers, siτ , gi and Xi, and trajectories

Tiτ that the student’s noise-free scores can follow conditional on the observables. The first

12



term inside the inner integral is the probability that the trajectory is not interrupted by a

placement decision before attempt τ . The second one is the probability that the student

retakes at τ . Finally, the third term gives the probability that the trajectory of scores lands

into Ωk in attempt τ + 1. The inner integral is divided by the probability of surviving τ

attempts conditional on observables in attempt τ :

Pr{aiτ = 1|siτ , gi, Xi} =

∫
Pr{aiτ = 1|Tiτ}dF(Tiτ |siτ , gi, Xi) (33)

In order to use conditions (32) in a GMM estimator, one has to compute the integrands in

(32) and (33) and approximate the expected values with the finite-sample analogs.58

First, the probability of surviving τ attempts along the trajectory S̄iτ is found from (29).

The student keeps retaking if her ε shocks received in all prior attempts stay below the

retaking thresholds. Therefore, the estimate for the above probability is

P̂r{aiτ = 1|Tiτ} =
τ−1∏
l=1

Φ

(
êl(til)

σ̂ε

)
(34)

The probability that the combined shock λiτ+1 + εiτ+1 takes the student from tiτ into Ωk

is estimated by

P̂r{(gi, siτ+1) ∈ Ωk|gi, tiτ ;µλτ+1, σλτ+1}

=


0, if (gi, s) /∈ Ωk ∀s,

Φ

(
Sku−tiτ−µλτ+1√

σ̂2
ε+σ

2
λτ+1

)
− Φ

(
Skl−tiτ−µλτ+1√

σ̂2
ε+σ

2
λτ+1

)
, otherwise,

where Sku and Skl are the upper and the lower boundaries of scores in Ωk.

Integrating over Tiτ in (32) and (33) requires the knowledge of joint density of ti1, . . . , tiτ

conditional on siτ , gi and Xi. Note that this density describes the whole population, not just

the retakers who survive τ attempts. The latter fact allows us to use normality and indepen-

dence of all shocks in the model. This assumption implies that the variables ti1, . . . , tiτ , siτ ,

gi are jointly normal conditional on Xi in the original cohort of students. The mean and the

58For more details and the formal proofs, see the online appendix to Krishna et al (2018).
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covariance matrix of this distribution depend on {µλl, σλl}τl=2 and the parameters estimated

in step 1. This implies that the sequence ti1, . . . , tiτ is jointly normal, too, conditional on siτ ,

gi and Xi. The mean and the covariance matrix of this distribution can be easily derived

from the above parameters.

In order to obtain finite-sample analogs for the moment conditions in (32), we approxi-

mate the left hand side by the number of (τ + 1)-time takers in the set Ωk divided by the

total number of τ -time takers in the data. The outer integral on the right hand side is ap-

proximated by the average over (siτ , gi, Xi) of τ -time takers in the data. The inner integral

is computed numerically using Gauss-Hermite quadratures.

We approximate the unknown retaking thresholds eτ (t) by piecewise-linear functions

defined on three grid points, t∗1,τ , t
∗
2,τ , t

∗
3,τ :

eτ (t) =



e∗1,τ , t ≤ t∗1,τ

e∗1,τ + (e∗2,τ − e∗1,τ )
t−t∗1,τ
t∗2,τ−t∗1,τ

, t∗1,τ ≤ t ≤ t∗2,τ

e∗2,τ + (e∗3,τ − e∗2,τ )
t−t∗2,τ
t∗3,τ−t∗2,τ

, t∗2,τ ≤ t ≤ t∗3,τ

e∗3,τ , t∗3,τ ≤ t

The grid points t∗1,τ and t∗3,τ are located at the 20th and the 80th percentiles of siτ among

τ -time takers, while t∗2,τ = (t∗1,τ + t∗3,τ )/2. In total, we have nine equations in (32) to identify

five parameters, e∗1,τ , e
∗
2,τ , e

∗
3,τ , µλτ+1 and σλτ+1, for cohorts τ = 1, 2, 3.

2.2.2 Estimation for attempts greater than 3.

In our data, the number of attempts is censored at five. Thus, we cannot use moment

conditions (32) for τ ≥ 4. Thus, we assume that the students stop improving their scores

and the costs of retaking stop changing after the fourth attempt.59 We rely on one important

implication of this assumption: student’s future stream of payoffs does not depend on τ after

τ = 4 as the dynamic problem in (27) becomes stationary. Thus, eτ (t) = e4(t) for any τ ≥ 4.

In order to completely describe student’s behavior after fourth attempt, one has to pin down

a single threshold function e4(t).

59Taking the exam four times gives the student at least 3 extra years to prepare, and it is natural to
assume that the investing preparation time has diminishing returns.
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The set of moment conditions for e4(·) is obtained by summing both sides of equation

(32) for attempts τ ≥ 4 and expressing the right hand side in terms of variables observed in

attempt 4:

∑
τ≥4

Pr[(gi, siτ+1) ∈ Ωk, aiτ+1 = 1|ai4 = 1] =

∫ ∫ Pr{ai4 = 1|Ti4}
Φ
(
e4(ti4)
σε

)
1− Φ

(
e4(ti4)
σε

)
×Pr{(gi, siτ+1) ∈ Ωk|gi, ti4}dF(Ti4|si4, gi, Xi)

 dG(si4, gi, Xi|ai4 = 1)

Pr{ai4 = 1|si4, gi, Xi}
(35)

k = 1, . . . , 9.

Our GMM estimation procedure is organized sequentially. First, we estimate parameters

associated with the first retaking decision: e1(·), µλ2 and σλ2. Then, we set up and run the

GMM estimator for e2(·), µλ3 and σλ3, using ê1(·), µ̂λ2 and σ̂λ2 to compute the probability

of survival in (34) and the distribution of noise-free scores F . Then, we obtain the estimates

for τ = 3 in a similar way; we use the GMM estimator based on (35) for τ = 4.60

2.3 Step 3: payoff-related parameters

In the final step of our estimation procedure, we find the fundamental components of the

model related to payoffs: the costs of retaking, ψτ , and the utility function, U(r). We do so

along the lines of step 2 in Hotz-Miller’s CCP algorithm.

First, note that the continuation value function V Rτ (tiτ ) from Bellman’s equation (27)

can be found by integrating the net present value of future payoffs over all trajectories

tiτ+1, tiτ+2, . . . and all future student actions. Since we have estimated the parameters of

learning shocks in step 2, we know the law that generates state transitions: (tiτ+1 − tiτ ) ∼

N [µλτ+1, σλτ+1], εiτ ∼ N [0, σε]. We also know the decision rule that students use in equilib-

rium: retake in attempt τ if εiτ < eτ (tiτ ). Thus, given candidate values of ψt and U(r), we

can compute the continuation value V Rτ (tτ ) on a grid of tτ by simulating shocks that hit

60Estimating parameters sequentially is less efficient that using one GMM routine with optimal weights.
However, a joint GMM routine requires computing the probability in (33), which is very demanding compu-
tationally. If we were estimating all parameters in one run, we would have to recompute this probability on
every iteration of the GMM algorithm.
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students, student reactions to these shocks and the associated payoffs. Knowing who chooses

placement and what their scores are, we can also construct the inverse cutoff function, r∗(s).

Once the continuation values are known for every income group, attempt and grid point,

one can impose the assumption that students maximize their utility. That is, a rational

student in the state (tiτ , εiτ ) retakes if the utility of placement is lower than the continuation

value:

U(r∗(tiτ + εiτ )) < V Rτ (tiτ ).

We use this inequality to find the threshold for ετ , ẽτ (tiτ ), below which a rational student

chooses to retake.

Finally, we plug the threshold functions ẽτ (tiτ ) into moment conditions (32) and (35) in

place of eτ (tiτ ). We find the estimates for ψτ and U(r) by minimizing the objective function

for unweighted GMM employing all moment equations in (32) and (35). In contrast to step

2, we use all moment conditions simultaneously since one of the parameters being estimated

(the utility of placement) is common to all attempts.

The utility function is parameterized in a flexible manner as:

U(r∗(s)) =
10∑
j=1

γjΦ

(
s− sj
h

)
, γj ≥ 0,

10∑
j=1

γj = 1.

The coefficients γ are allowed to differ by income group. The normalization of
∑10

j=1 γj = 1

ensures that the utility at s = ∞ is unity. As Φ(.) is increasing in s, constraining γj ≥ 0

ensures that the utility function is non-decreasing. The larger is h, the smoother is the

function; we set h = 15.

Note that γ is not a structural parameter; the function approximated by γ depends

on r∗(·), an equilibrium outcome, which changes in response to policy interventions. After

obtaining the estimates of γ, we use the simulated r∗(·) to find U(r) for the values of r =

0, 0.01, . . . , 1. In total, we have four cost and ten utility parameters: ψ1 . . . ψ4, γ1 . . . γ10.

They are identified using 36 moment conditions in equations (32) and (35): nine conditions

(one for each cell Ωk) for each attempt τ = 1, 2, 3 in (32) and nine more in (35).

The economics behind identification of the payoff parameters is as follows: if the marginal
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utility of a higher score increases sharply at s, then students close to s will be risk loving

and hence tend to retake the exam more than students with s where utility of the score is

less convex. Thus, the observed local retaking rates pin down the curvature of the utility

function. The retaking costs are pinned down by the overall retaking rates in the given

attempt. We do not attempt to estimate δ as it is well known that discount factors are hard

to identify in such settings (see Magnac and Thesmar (2002)); we set δ at 0.9 for all students.

2.4 Step 4: returns to pre-test effort

In order to estimate the effect of pre-test effort on the exam scores in the first attempt, we esti-

mate equation (25) using OLS. The key parameter of interest is ρgi0(hs, pt) for every combina-

tion of middle school GPA, gi0 ∈ {A,B,C}, high school type, hs ∈ {PUB,PRIV,ANAT SC},

and the dummy for getting private tutoring, pt ∈ {0, 1}.

Estimating returns to schooling raises usual concerns over endogenous selection into treat-

ment. For instance, students with higher ability and more educated parents may be more

likely to choose better schools and obtain higher scores at the entrance exam. Unless one

controls for ability, the true effect of schooling could be confounded by this relationship.

To address these concerns, we include three sets of controls: middle school GPA, parental

occupation and parental level of education, separately for both parents. Other controls in-

clude access to the Internet, the expected sources of funds to cover education, the population

in the home city, the number of siblings and gender.

2.5 Step 5: costs and benefits of pre-test effort

In this step, we need to estimate the parameters responsible for the costs and benefits of

schooling choices before the first exam attempt. For students with each level of middle school

GPA (gi0 = A, B or C), we estimate the set of coefficients γgi0(hs, pt) for six schooling levels:

public, private or Anatolian high school with or without extra tutoring. These costs are

allowed to depend on middle school GPA as many good schools select students based on

performance. Since we use public school with no tutoring as the baseline, we are left with

5 parameters to estimate. We also need to estimate the covariance matrix Σc of student-
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specific cost shocks [ui,PRIV , ui,ANAT SC , vi,1], which would allow us to capture relationships

in individual cost shocks driven by unobservables that can potentially cause bias. Finally,

we need to estimate the coefficient b that determines the tradeoff between benefits and costs

in the payoff function (26).

We start by computing the value of effort W (ti0(hs, pt)) for each first-time exam tak-

ing student. We use the estimates from step 4 to find the expected score ti0(hs, pt) =

ρ̂gi0(hs, pt) +Xi0χ̂gi0 for all six possible schooling options (hs, pt) conditional on the observ-

ables and middle-school GPA. Then, we recursively solve Bellman’s equation (27) using the

parameter estimates obtained in step 3, which describe the payoff structure and the distri-

bution of shocks. In particular, we obtain the value function V1(ti1, εi1). We numerically

integrate this function over the values of the learning shock λi1 using the Gauss-Hermite

quadrature formula and compute the payoff to each schooling option W (ti0(hs, pt)) as pre-

scribed by equation (28).

Once we know the value of effort associated with each choice, the choice of schooling

in (26) just becomes the standard mixed logit discrete choice problem. In equations (24)

and (26), the payoffs depend on the unknown parameters (b, γgi0(hs, pt) and Σc). The

idiosyncratic shock w is drawn from the standard Gumbel distribution, the error components

u and v can be viewed as random coefficients on the school type dummies. We estimate the

parameters b, γgi0(hs, pt) and Σc in this model using maximum likelihood.

The estimates of b and γgi0(hs, pt) are important for calibrating our theoretical model.

Intuitively, if b is low, i.e. performing better has little value, then the cost shocks are more

important in driving choices rather than the benefits of scoring high. Consequently, we would

see little relationship between the payoffs from costly schooling and the share of students

opting for such schools. The γ’s are identified by comparing gains from the various options

to the shares of students opting for them. If, for example, public schools are chosen by many

students despite low gains in scores, this means the costs of attending public schools are

low.
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3 Counterfactuals

3.1 Robust Pareto frontier and bottom pooling

While the robust Pareto frontier policy should pool agents in all the intervals where the dis-

tribution of types, F (x) lies below its concavification, F̂ (x), all the upper intervals combined

include just a small fraction of the population. We therefore compare the robust Pareto

frontier policy to the minimal bottom policy that only pools agents in the lowest interval

(robust bottom pooling). Simulated gains under these policies are indistinguishable, as is

evident from Figure 3.1. For this reason, we restrict our attention to single-interval policies

(which need not be robust) including bottom pooling, top pooling, and any single-interval

policy in between.
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Figure 3.1: Net utility (y − c(t)/x): robust Pareto frontier policy vs minimal bottom pooling

3.2 Bottom pooling in the structural model

While the theoretical model is useful in producing tractable intuition, one may wonder if the

results survive in a more realistic setting. In particular, two features of the model may raise

readers’ concern: (a) in the model, exam scores are noise-free, which means that students

can perfectly target their desired ranking, (b) the model does not allow for exam retaking,

while retaking is prevalent in the data.
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In this subsection, we use numerical simulations to explore the consequences of adding

noise to the exam scores and allowing retaking. We simulate the outcomes of the maximal

bottom pooling policy found in Section 7.2, but we do so using the structural model outlined

in Section 7.1 rather than the theoretical model from Section 2. The structural model allows

for multiple sources of uncertainty in scores and explicitly accounts for retaking.

(a) Net expected ex-ante utility (b) Expected score at placement

(c) Prize in equilibrium, y(x) (d) Expected cost of effort in equilibrium

Figure 3.2: Equilibrium payoffs and effort in the structural model without retaking under assortative matching
and bottom pooling.

We start by simulating the structural model without the option to retake. Given the es-

timated structural parameters, we simulate two equilibria: a status-quo equilibrium taking

the estimated distribution of prizes as given, and a counterfactual one imposing the maximal

bottom pooling policy found in Section 7. To facilitate comparison with the main results, we

focus on variables similar to those depicted in Figure 9. The expected score ti0(PUB, 0) (see
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equation 25) conditional on choosing public school and no private tutoring is a natural coun-

terpart for ability. The expected placement payoff E[W (ti0(hs, pt))|(hs, pt) solves (26)] is the

counterpart of the prize y. The expected cost of schooling E[ci(ti0(hs, pt))/b|(hs, pt) solves (26)]

is the analog of the cost of effort.

Figure 3.2 summarizes the impact of bottom pooling in the structural model without

retaking. Qualitatively, the key results from the theoretical model hold. Bottom pooling

results in the reduction of effort, especially at the lower end of the ability distribution. Lower

effort leads to a reduction in placement scores, which puts most low-ability students in the

pooled bottom interval. If one defines utility as the expected payoff with all the unobservable

shocks to scores and costs of schooling integrated out, the maximal bottom pooling policy

is Pareto-improving as evident from Figure 3.2a. The most notable difference between this

set of results and those from the theoretical model in Figure 9 is that high-ability students

are not indifferent between the pooling policy and the status quo here.

To make the model even more realistic and reflect the prevalence of retaking in Turkey,

we allow for the option to retake the exam in the model and repeat the simulation exercise

again. We find the baseline equilibrium and the equilibrium under the maximal bottom

pooling policy. Figure 3.3 summarizes the results. All the main conclusions stay the same.

Most importantly, we find again that the maximal bottom pooling policy is Pareto-improving.

4 Experiment: additional results

4.1 Main experimental results

Our analyses in the main text focus on the subjects whose choices in the risk elicitation

task are consistent with risk neutrality. Risk neutrality allows us to apply the model and

its predictions with players’ utilities equalling their potential earnings. Reasoning for this

choice as well as additional results on non-risk-neutral subjects are in the next subsection of

this appendix. The tests and corresponding p-values for comparing data across the discrete

and pooling rounds are the result of Wilcoxon matched-pairs signed-rank tests. In reporting

aggregate results we use the estimates from Section 7 to determine the appropriate weights
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(a) Net expected ex-ante utility (b) Expected score at placement

(c) Prize in equilibrium, y(x) (d) Expected cost of effort in equilibrium

Figure 3.3: Equilibrium payoffs and effort in the structural model with retaking under assortative matching
and bottom pooling.

for each ability level.

4.2 Results on non-risk-neutral subjects

Risk aversion can be determined by identifying at which point a subject switches away from

the risky gamble to the fixed amount (84.6 percent of our subjects had a single cross-over

point). Risk neutral subjects are identified as those who chose the risky gamble ($1 with

probability 1/2 and $2 with probability 1/2) over the fixed amount when the fixed amount

was strictly less than $1.50, but switched to the fixed amount when it was $1.50 or $1.55,

indicating an indifference point “close to” the gamble’s expected value of $1.50. Roughly 44

percent of the subjects with a single cross-over point behaved in this way. Over 85 percent of
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the remaining subjects who had a single crossover point from the lottery to the fixed amount

were risk averse.

In this section we provide additional statistics on policy evaluation regarding subjects

who are not risk neutral. We find that risk aversion and behavior in our setting follow

what would be expected. The p-values reported below correspond to the exact p-values of a

Wilcoxon rank-sum test.

High ability players. First, risk averse subjects whose abilities are above the pooling thresh-

old should behave similarly to risk neutral subjects in the Lottery treatment when faced with

the pooling policy. This is exactly what we find (the lowest p-value when comparing behavior

for each ability level across the risk averse and risk neutral players is p = 0.1031). However,

subjects who are risk-seeking should either be more likely or equally likely to choose the lot-

tery over the certain outcome compared with risk-neutral, players but never less likely. We

find that subjects with the three highest ability levels are more likely to choose the lottery

(the highest p-value is p = 0.0689), and subjects with the lower two ability levels are equally

likely (the lowest p-value is p = 0.3285).

Low ability players. Risk seeking subjects whose abilities are below the pooling threshold

should behave similarly to risk neutral subjects in the Lottery treatment when faced with

the pooling policy. This is exactly what we find (the lowest p-value is p = 0.3517). For risk

averse players, they should either be more likely to opt out of the lottery, or, depending on

how risk averse they are, behave as risk neutral players do. We find no difference in behavior

between risk averse and risk neutral players who are of low ability (the lowest p-value is

p = 0.3748).

4.3 Additional data collection

We ran some sessions in which under the pooling policy the lottery was replaced with a fixed

amount of 0.25, which corresponded to the expected value of the lottery under the pooling

policy. Below we present the results from these sessions. Figure 4.1 shows the average

profits under the discrete and pooling policies. Just as in the data presented in the main
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text, subjects here on average do better under the pooling policy.
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Figure 4.1: Average profits under the discrete and pooling policies.

In fact, statistically speaking, results are largely similar with those from the main text.

The only noteworthy difference is that here subjects who are high ability but whose ability

are just above the pooling threshold behave as predicted: removing the lottery removes the

ability to randomize and subjects make the profit maximizing choice.

4.4 Behavior or low and high ability subjects

Theoretically, the low-ability subjects (in our experiment those with ability levels of at most

0.10) are the ones who benefit from the pooling policy, while the high-ability (ability levels

of 0.12 and above) ones should be indifferent between the pooling and discreet policies.

Empirically, we indeed find that among low ability subjects, profits increases for each

ability level under pooling compared to under the discrete policy (the p-values in all pair-

wise comparisons are all strictly lower than 0.001). At the aggregate moving to a pooling

policy increased aggregate profits by 70.5 percent, more than the discretized theoretical

prediction of 65.7 percent.61

For high ability subjects, we instead find that moving to a pooling policy slightly decreases

the aggregate profits (about 1.6 percent). We identify that this small drop is the result of the

behavior of subjects whose ability is lowest among the high ability subjects (ability of 0.12).

61This is because under the discrete policy relatively fewer low ability subjects chose the profit-maximizing
investment levels and their mistakes were larger in terms of forgone profits.
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The behavior of these subjects was statistically different under the two policies (p = 0.006),

and the magnitude of the difference is large. Indeed, under the discrete policy, 89.5 percent

of these subjects chose investment levels consistently with the theoretical predictions of the

model. This fraction dropped to 36.8 percent under the pooling policy, with the remaining

subjects opting for the lottery. This represents an aggregate profit loss of 5.1 percent. All

other high ability subjects behaved similarly across the two policies (the lowest p-values for

pair-wise comparisons between the discrete and pooling policies is 0.125).

4.5 Deviations from predictions

Our experimental results show that subjects whose ability levels are the lowest among those

who should exert positive effort instead on average exert none and choose the lottery. In

this section we explore differetnt possible explanations.

We argue that mistakes are an unlikely explanation. While subjects whose ability is

closest to the threshold separating low and high ability are precisely those who one might

think are most likely to make mistakes, we observed no such “mistakes” for low-ability

subjects with the highest ability, that is, subjects with an ability of 0.10. This is despite the

fact that the difference in net profit between the two policies for subjects with ability 0.10

is even narrower than it is for subjects with ability 0.12. Thus, deviations from predicted

behavior are asymmetric around the threshold and confined to high-ability subjects with the

lowest ability. This asymmetry, and the lack of such deviations at other ability levels, do

not favor mistakes (or inattention) as a likely cause.

We also rule out order effects as there is no statistical difference between the groups who

saw the pooling policy first and those who saw the discrete policy first (p = 0.764). This

also rules out experimenter demand effects because these patterns exist also with subjects

who saw the pooling policy first.

Risk-seeking behavior is also an unlikely cause because we already restrict attention to

players who appear to be risk-neutral. One caveat is that the coarseness of our measure

of risk aversion may not identify mildly risk seeking subjects who would choose the lottery

over the fixed amount. This explanation, however, would imply a relatively large fraction

of subjects with such preferences, which is inconsistent with past work on risk aversion

25



elicitation (see Holt and Laury (2002) for example).

In the main text we argue instead that preferences for randomization may influence these

subjects’ choices. Preferences for randomization have been explored by Dwenger, Kübler, and

Weizsäcker (2016), who use both laboratory and non-laboratory data (from a clearinghouse

for university admissions in Germany) to show that up to 50 percent of individuals choose

lotteries between available allocations, indicating an explicit preference for randomization.

The authors discuss this in the context of responsibility aversion. Agranov and Ortoleva

(2017) show that when faced with “hard choices” a significant fraction of the population

may prefer a lottery to making a deterministic choice. In our experiment, the difference

between the expected net profit from the lottery and the theoretically predicted choice is

the smallest among all subjects for precisely the subjects who deviate from the theoretical

predictions, consistent with choosing a investment being “hard” for them. Further, we

showed above that if we remove the option to randomize by replacing the lottery with a

fixed amount equal to the lottery’s expected value, subjects of all ability levels make the

profit maximizing choice under the pooling policy.

5 Experiment: procedures and cost-to-school mapping

5.1 Procedures – additional details

The experiment had two parts, each with multiple rounds. Online Appendix 6 contains all

the experimental materials subjects faced.

Part 1: the college admissions task. Part 1 consisted of two rounds. Each round

corresponded to a college admissions setting, one round with a bottom pooling policy (the

“pooling policy” round) and one round without any pooling (the “discrete policy” round).

The order of the rounds was randomly determined.

In each round, subjects made an investment choice that determined which college they

would enroll in. Each round had ten colleges, labeled College A (best), College B, etc. up

to College J (worst). The payoff associated with enrolling in each college was fixed for both

rounds, with that of College A being the highest, followed by that of College B, etc. Prior to
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the first round, each subject was assigned an “ability” in the form of an investment cost for

each college. This ability remained fixed for both rounds. The payoffs, costs, and abilities

are derived from a discrete version of the calibration and equilibrium results of Section 7.

In each round, subjects decided how much to invest in “virtual study materials.” A sub-

ject’s investment determined the college that subject enrolled in, which determined payment

if that round was chosen for payment. In the pooling round, a subject who chose to invest

zero tokens in study materials participated in a lottery that randomized among the bottom

six colleges to determine the college in which the subject enrolled, with the associated pay-

ment.62 Figure 10a in the main text presents the expected profits predicted by the theory

in both rounds for each ability level in the discretized model. The overall weighted profits,

using the appropriate weights for each ability level, are predicted to be 20 percent higher

under the pooling policy than under the discrete policy. The predicted increase for low

ability subjects is 65.7 percent.

Part 2: risk elicitation. In Part 2 subjects participated in a series of ten rounds in

which they had to choose between a fixed amount and a risky gamble (for more details see

6). This task allows us to identify subjects whose choices were consistent with risk neutrality,

an important element for the analysis of the pooling-induced lottery.

Procedures. A total of 602 subjects completed the experiment, recruited from the Prolific

online platform.

Subject selection. For any particular ability level, we stopped collecting data once we

had at least 50 observations. An additional 208 “participants” started the experiment but

failed to advance because quiz questions were answered incorrectly. This proportion (25.7

percent) is not particularly noteworthy – aside from ensuring that participants have read

and understood the instructions, the quizzes have a second purpose: ensuring that bots are

unlikely to make it through to the main part of the study. We restricted our subjects to

62To isolate the possible effects of the lottery per se, we also ran sessions in which a subject who invested
zero tokens in study materials got a fixed payment equal to the expected value of the lottery. The results
from these sessions are in Online Appendix 4.
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be English speakers. Overall 48.8 percent of the subjects were female, 47.7 percent were

male, and 2.5 percent identified as neither of the two. The remaining 1 percent of the

subjects preferred not to answer. Data were collected during the month of March 2022. The

experiment lasted between 10 and 15 minutes for 95 percent of the subjects. Subjects were

paid an average of $4.00, corresponding to a rate of just over $19 per hour.63

Instructions for the second round were given after the first round was completed. After

reading the instructions for any given round, subjects had to answer three quiz questions

that tested their understanding of the instructions as well as their ability to calculate payoffs.

Subjects were allowed to take the related quiz twice. If by the second attempt a subject

failed to answer all three questions correctly they were removed from the experiment. The

quiz questions serve both as a tool to exclude bots from our data and to ensure proper

reading of the instructions. Overall, 76 percent of the subjects who started our experiment

answered all questions in both quizzes correctly, among which about three quarters did so

on the first attempt for each of the two quizzes.

5.2 Construction of the cost-to-school mapping

We adapt the techniques of Section 7 to a discretized economy in which there is a unit mass

of students and 10 schools. Each school has a capacity for 0.1 of the student population.

The cost of getting the score t is c(t)/x, where x is student’s ability. Using the same cost

function and the distribution of student abilities as in the estimated continuous economy,

we simulate equilibrium cutoffs for the 10 schools in the discrete economy. Net payoffs (y −

c(t)/x) in the discretized economy resemble those in the continuous one, and the placement

payoffs u are approximating those in the continuous economy. Figure 5.1 shows how the

ability cutoffs (5.1a) and net payoffs (5.1b) in the discretized economy relate to those in the

continuous economy.

The bottom pooling policy we found previously for the continuous economy is necessarily

Pareto-improving in the discrete economy. Further, the two policies are qualitatively similar:

63The Prolific platform requires a minimum of $6.50 per hour. All subjects who completed the experiment
were asked how much they earned per hour on average on Prolific. The average response was $9.65. The
payments in this experiment were thus relatively high, almost triple the minimum required and double what
subjects had earned in past studies.
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(a) Mapping from student’s ability ranking to prize.
(b) Student net payoffs as a function of ability ranking in
the no-pooling scenario.

Figure 5.1: Discretized vs. continuous economy.

(a) Net payoffs by ability (b) Net payoffs by ability ranking

Figure 5.2: Student net payoffs as a function of ability in the discretized economy

roughly the same set of students get seats in the pooled school under both policies, and their

placement payoffs are almost identical. Figure 5.2 illustrates how the pooling policy is

Pareto improving in the discretized economy (to see how this is qualitatively similar to the

continuous economy, compare this figure to Figure 9 in the main text). Student net payoffs

in the discretized economy under the discrete policy and the pooling policy and displayed

as a function of their ability (5.2a), and a function of their ability ranking (5.2b).
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5.3 Parameter selection of the cost-to-school mapping

Here we present the particular cost-to-school mapping for the online experiment. The exper-

iment uses 6 ability levels that are to the left of the pooling threshold and 5 that are to the

right of it: subject in the experiment was randomly assigned to one of the following ability

levels: 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.15, 0.20, 0.60, 1.00. These were chosen so

that the majority of subjects had abilities below the pooling threshold (as is the case in the

Turkish data – see Section 7).

Ability

School
Enrollment

Bonus
0.01 0.02 0.04 0.06 0.08 0.1 0.12 0.15 0.2 0.6 1

J 3 0 0 0 0 0 0 0 0 0 0 0
I 16 20 9 7 3 3 2 2 1 1 0 0
H 24 49 24 12 10 8 5 4 3 2 1 1
G 30 83 41 21 14 13 10 8 6 4 1 1
F 35 127 64 32 21 16 14 11 9 6 2 1
E 42 185 93 46 31 25 19 17 12 10 3 2
D 49 257 128 64 43 34 28 21 19 16 4 3
C 55 346 173 86 57 43 35 30 23 21 6 4
B 62 466 233 117 78 57 47 39 33 24 8 5
A 74 762 381 191 127 95 76 64 51 43 13 8

Table 5.1: Discrete policy: cost of targeting particular schools by ability.

Table 5.1 shows the mapping from investment levels to cost under the discrete policy

for each ability level in our experiment, using the results of the empirical estimation for

the discretized economy described above. For example, a subject assigned to ability level

0.06 would have to invest 14 Tokens out of the 100 Token endowment in order to meet

the requirement for School G and obtain a 30-Token enrollment bonus. If that subject had

instead invested 21 Tokens, they would enroll in School F and obtain 35 Tokens. Table 5.2

shows the parameters that were used under the pooling policy. The parameters in this table

are those the subjects saw on their screens.64 Highlighted in yellow are the profit maximizing

choices. For example, a subject assigned to ability level 0.06 who invested 0 Tokens out of the

64The parameters are scaled up by a factor of 100 relative to the empirical estimation.
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100 Token endowment would enter an enrollment lottery and have equal chances of being

admitted to school E, F, G, H, I, J and earn the bonus associated with the school they

ultimately enrolled in. If that subject had instead invested 57 Tokens, they would enroll in

School C and obtain 55 Tokens.

As can be seen, subjects whose abilities fall below the pooling threshold (i.e. subjects

with ability less than or equal to 0.10) are predicted to opt for the pooling lottery under the

pooling policy, while “high ability” subjects instead are predicted to behave no differently

across the discrete and pooling policies.

Ability

School
Enrollment

Bonus
0.01 0.02 0.04 0.06 0.08 0.1 0.12 0.15 0.2 0.6 1

J
LOTTERY

Equal Chances of
3, 16, 24,
30, 35, 42

I
H
G 0
F
E
D 49 257 128 64 43 34 28 21 19 16 4 3
C 55 346 173 86 57 43 35 3 23 21 6 4
B 62 466 233 117 78 57 47 39 33 24 8 5
A 74 762 381 191 127 95 76 64 51 43 13 8

Table 5.2: Cost of targeting particular schools by ability under the pooling policy.

6 Experiment: screen shots

6.1 Discrete policy first

Below we present the screen shots that subjects saw on their screens. This particular sequence

corresponds to the subjects who saw the discrete policy first.
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Figure 6.1: Consent screens

Figure 6.2: Preamble
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Figure 6.3: Part 1 General instructions
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Figure 6.4: Instructions for Round 1 if discrete policy is seen first.
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Figure 6.5: Quiz after discrete round instructions.

Figure 6.6: Example of selection screen for discrete policy.
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Figure 6.7: Transition to Round 2.

Figure 6.8: Instructions for Round 2 if discrete policy is seen first.
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Figure 6.9: Quiz after pooling round instructions.
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Figure 6.10: Example of selection screen for pooling policy.

Figure 6.11: Transition from Part 1 to Part 2.
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Figure 6.12: Instructions for Part 2 (risk elicitation).

Figure 6.13: Example of decision screen for Part 2.
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Figure 6.14: Questionnaire.
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6.2 Pooling policy first

If a subject saw the pooling policy first the sequence of screens was slightly modified from

the Baseline in which subjects saw the discrete round first. Figures 6.4, 6.5, 6.6, 6.8, 6.9 and

6.10 are replaced, in order, with the figures below (Figures 6.15, 6.16, 6.17, 6.18, 6.19 and

6.20, respectively).

Figure 6.15: Instructions for Round 1 if pooling policy is seen first.
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Figure 6.16: Quiz after pooling round instructions.
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Figure 6.17: Example of selection screen for pooling policy.
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Figure 6.18: Instructions for the discrete policy.
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Figure 6.19: Quiz after discrete round instructions.

Figure 6.20: Example of selection screen for discrete policy.
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